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ABSTRACT. We propose in this short note a method enabling to write
in a systematic way a set of refined equations for average miets in
which correlations between populations are taken into @ starting
from a microscopic model for the evolution of the electrotinfigura-
tion probabilities. Numerical simulations illustratinigetimprovements
with respect to standard average ion models are presentkd anhd of
the paper.

1. INTRODUCTION

In the last years, the extension of average-ion models tontheeling
of plasmas in off-equilibrium conditions has been con®defcf. [DR],
[DFDM]). Those models give a simplified macroscopic stetedtdescrip-
tion of a large set of ions, by calculating the populationg/dfevels”. This
is an alternative to the more complex detailed descriptaseld on evolu-
tion equations for the probabilities of the many statesuglomicroscopic
processes in the plasma. If more detail about the distabudf states (for
example theV(N + 1)/2 correlations between level populations) is needed
in an average-ion model, this will be calculated afterwdcisfDFDM]). In
a previous paper (cf. [CDRY]), it was provided a study about thel@ions
under which the average ion model can rigorously be derigeal lanit of
the detailed models.

In this paper, we provide a model which is more complicatesh tthe
average ion model (it basically requires the resolutiovofV + 3)/2 or-
dinary differential equations (ODES) when the average iaud@hrequires
N ODES) but still much simpler than the microscopic modelsi¢iwimay
require the resolution of a number of ODEs of the orde2’6f{ N!)?). This
model is derived from the microscopic detailed descriptbihe plasma
by using a systematic procedure of moment closure.

We recall the setting and notations used in [CDR] and [DFDM].coB-
sider a set of ions which belong to the same species of atombath of

particles (electrons) at Maxwellian equilibrium at a givemperaturel'.
1
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We denote by the charge of the nucleus of the considered atomic species.
We consider the set of bound electrons in each ion and wectdiie elec-
trons in subsets which we shall call levels.

Levels are defined by grouping electrons with about the sameegg,
and usually the grouping is built in such a way that the nunibef levels
for bound electrons is finite: in our simulations, the lewsi be indexed
according to the principal quantum numbefup to the numbenN which is
a priori fixed), so that they will correspond to the atomiclishand we shall
use indifferently both words (shells or levels) to deno&ghame object.

A configurationE = (ki, ..., kyn)of anion is specified by the occupation
number (i.e. the integer number of electrohs) N of each level in the
ionic configuration.

Each bound electron sheitan accommodate a finite number of electrons
D; (D; = 2% in the numerical examples that we present). We shall denote
asC the set of all allowed(( < k; < D,) ionic configurations:.

At the microscopic level, the set of ions is described by tludability to
find an ion in the configuratioh at timet, which we denote by:(t). We
have of cours@kc gz(t) = 1, and the evolution equation fgg(¢) is

dtgk Z B qgp(t Z Br w95t

ke KeC

(1)

whereBk/_m is the rate of the transition from conflguratnhhto configu-

ration k. Here and later, we assume that only allowed configuratioas a
included in the sums. .

The average populations of the shefig) = (fi(t),..., fn(t)) are de-
finedforh =1,..., N by

(2) fu(t) = Z kn gz(t)
keC
whereg;: satisfies eq.(1).

The number of significant configurations in the plasma isrosie large
that a detailed model (1) is unpractical. The descriptiaimefsystem can be
simplified thanks to the use of a macroscopic model in whiels#t of ions
in different electronic configurations is replaced by a gabos all in the
same electronic configuratioavgrage ion). The electronic configuration
of each (and all) ion in this last system is such that the oatap number
of each shell of the average ion is the average (2) of the atimpnumbers
of the corresponding shell of the ions in the original system

At this macroscopic level, the set of ions is described byctilkection of
populations of levels for the average ion, which we shalldety{ f;, },>1
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or f = (f1,.-.,f~n), wheref, € [0, D] denotes the (non necessarily inte-
ger) population of thé-th level of the average ion.

In the average ion descriptiorf, satisfies the following evolution equa-
tion (forn =1,..., N):

(3) %fn = mz?;n (Am—>n - Bn—>m) + Ac—m - Bn—)c y
where we denote by,,_,,, andA.._,, the transition rates to the levelfrom
other levelsn and the continuuma, and byB,,_,,, and B,,_,. the transition
rates from leveh to other levels or the continuum. In general, the rates
andB are functions of the populations of the levels.

In [CDR], an equation of the form (3) was obtained as a consemu@n
a certain asymptotics) of an evolution equation for the pbality g;: of the
form (1). It was also described there the situations in wiiclé can expect
the average ion eq.(3) to reasonably mimic the microscapid g

Our goal in this paper is to introduce (following a coherdasare proce-
dure) anintermediary model between (1) and (3), which is hopefully closer
to the microscopic eq.(1) than the average ion model, builigractable
(that is, not too many ODEs have to be solved). In this motiel state of
the system will be described not only by average populatf@ghsbut also
by second order moments; = > ;. knk; g5, or correlations

4 fu =Y (k= fu)(ki = f1) 95 = xu — fufi

kec
In section 2, we describe in detail the microscopic modehleeshall study;,
and we write a non closed equation for the moments of ordedRanf the
probabilitiesg;; of the shells. In the next section, we introduce the closure
assumptions and deduce our intermediary model. Numetfioatrations
are finally provided in section 4.

2. THE MICROSCOPIC MODEL AND THE EQUATIONS FOR ITS MOMENTS

2.1. Description of the microscopic model. We shall use in the sequel the
following notation for sums of vectors:

k4 (hyDij = (k1o ki hy ok +1. . ky) 1<i<j<N,

—

In order to keep things as simple as possible, we considexvbietion
of the level populations in ions where the only transitioogasses between
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levels are one-electron transitions (excitation and dat&txon, ionization
and recombination) which are due to collisions with pagscin the bath.

As a consequence, we do not take into account here radiasimsitions

nor two-electron transitions. We notice that, because wkidted among
the allowed transitions the processes of ionization andméxnation, the
transitionk — & does not necessarily preserve the total number of elec-
trons in the configuratiof.

According to the above assumptions, the transition prdibabi B . ;
in (1) will be nonzero only whert’ = k —+ (£1,F1),; for somei,j €
{1,..,N}, ork’ = k + (£1), for somei € {1,.., N}. Then the evolution
equation (1) of the probability;:(¢) can be written as

(5)
dtgk ZZ [ Tjm 9) F+(L,=1)m (T Q)E}

jlml

+ Z [ ¢ 9) Fr, T (T¢ 9>E+(—1)j — (Tje 9)g — (T 9>E} )

with bound-bound transition ratds,, and bound-free transition ratds,
(ionization) andl; (recombination). The rat€s are written as functions
of the initial configuration of the transition and of courgg, = 0 when
j=m.
The number of electron’s; in the departure level and the number of holes
— fm in the arrival level can be factored out:

Tjm = kj(Dp = ki) Rjm » Tje = kjRje , Ty = (Dj — kj) Re;

(where, as before;,,, = 0 whenj = m).

This writing recalls that there is no transition startingnfr an empty
level, or going to a full level. Moreover, it allows to introde one essential
approximation in our model: the reduced rafesare assumed not to be
functions of configurations, but to depend on the averagejlpﬁpnsf
only. This is the "macroscopically screened model” of [CDR].

The ion charge is given by the formula

N
(6) z" Z*JF: Zha

—

and to each level is associated an energy () which is also assumed to
be a function of the average populatiofis
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2.2. Equilibrium solution of the microscopic model. Since we consider
here only transitions due to collisions with particles i thath, the sta-
tionary solution of the model is the thermodynamical etpuilim with free

electrons. We want the equilibrium solution of egs.(5) taHee(factorized)
binomial distribution

N e e —
o e f(2) () ()
koo kn) \ Dy, Dy,

with the equilibrium average populations given implicitly the Fermi-
Dirac formula:

(8) =

Dy,
L+ exp (~Bu(f)/T) /2" () Cr

whereC'r is a positive constant (depending only Gh

For this, we tell that, as a consequence of the microreuétgilthe re-
duced transition rates must satisfy thaetailed balance” relations: each
rate of transition is related to the rate of the inverse itemsso that the
equilibrium (7-8) is possible. For,m =1,..., N,

En - Em
Rmn = exp (T) an )

andforn=1,..., N
E,
R., = Z"Cr exp (?) R,..

2.3. Non closed equations for moments. It is possible to write an equa-
tion for the averageg, defined in (2) (first moments af;), starting from
eg.(5) and making suitable changes of indices, as a sum dvsrssible
configurations. It reads

(9)
> (Tin = Thy) + Ton — The | 95

d
th = Z 2
= Z{Z [ (Dy, — kp)R 'h(q) — kn(D; _kj)th(_>]

Jj=1

N

+(Dy — kh)Rch(f) - thhC(f)}gE ’

We observe that the r.h.s. of eq.(9) can be expressed in w@rithe first
and second moments o¢f, or as well the average populations (2) and the
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correlationsfy; (4). EQ.(9) becomes

(10)
N

o= 3 [0~ BORA) ~ D, ) ()]

J=1

—

HDn = ) RenF) = FuBnel D)+ 3 iy [Rus(F) = Rin( )]

In the same way, starting from eq.(5) and making suitablengés of
indices, we can write an equation for the evolution of fhe= > "z knk; gz
(second moments @f:) as a sum over configurations:

(11)

N
d
%Xhl = Z{ h ; ﬂj _I'Tcl T’lc
N
+k Z (Tin — Thy) + Tep, — The
=1
N
—Th — Tip + O Z (Tjn + Thy) + Ten + The } Ji -
=1

The r.h.s. of eq.(11) can be expressed in terms of the firsdskand third
moments ofy;, or as well the average populations (2), the correlatiops (2
and the triple correlations

Fuim =Y (k= fu) (bt = f) (b — fm) 95

k

We obtain thus an equation for the evolution of correlations

(12)

N
%fhl = Bul(f + Z [Ah] ) fir + Agi( 3fjh}

J=1
N

+ [Rhl(_>+th(_3] fhl—5hzz [th(3 (3] nj

=1

+£|:Rh](f_> (_>+le(_>_le(_>} fint s
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where
Ap; = fuRnj+ (Dyn — fn)R;
N
—0p;j {Z — fi))Ru + filin) + Ren + Rhc} ;
=1
and
Bn = —fu(Di—= fi)Ru — fi(Dy — fo)Rin
N
+0n1 {Z /n(Dj = f3)Brj + [;(Dn = fu)Rjn]
j=1

+(Dp = fu)Ren + foRne} -

2.4. Equilibrium solution of the moment equations. Since the equilib-
rium solution of the microscopic equations (5) is the (faiztd) binomial

distribution (7), the r.h.s of equations (10) and (12) vhessif the average
populations are the Fermi-Dirac ones (8), and the coroelatare those of
a binomial distribution, i.e.

(D — f.1)
Dy, ’

o (Dn — ") (Dn — 2f,7)
f]hl - 6]h 5hl L D}QL h

An interesting property is that the r.h.s of equations (E)ishes as well if
the triple correlations are only auto-correlatiorfg,{ # O only if j = h =
1), in particular if they are null.

(13) = O

and

3. THE INTERMEDIARY MODEL

We propose to use as a refined average ion model a closed sBtEs O
consisting ofN (N + 3)/2 equations for the quantiti€g},),—, v and
(fr)ni=1.~- This model is defined in a systematic way by neglecting the
triple correlationsf;;; in eq.(12):

(14)

M=

d N
thz = Bulf + [Ahj f]l+AlJ< )fjh}

J=1

N
+ [RM( )+ th(f)] fu =0y [th(f) + Rin(f)| frj -
j=1
From what we just said, the equilibrium solution of our mosiet of equa-
tions (10) and (14) is the Fermi-Dirac one (8) and (13).
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Comparing the set of equations of our intermediary model piigvious
average-ion ones,

e the equation (10) for the averages has additional termsndigpg
on correlations;

¢ the evolution equation for correlations (14) has new tereyedd-
ing on correlations (second line) in addition to those (liret) al-
ready present in [DFDM] and well-known references in stiats
(see [L], Sec.5, especially eq.5.17).

The interest of this model is two-fold. First, we think thes validity
goes beyond that of standard average ion models. We reaalhtfCDR],
it was established the validity of such models in variousations:

e When the plasma is close to equilibrium;
e For high temperatures;
e When each shell is either almost full or almost empty.

For contexts far from the above situation, we think that owdsi with
N(N + 3)/2 ODEs gives results closer to the microscopic model than the
average ion model wittV equations. We provide in the next section exper-
iments which sustain this point of view.

A second interest of this model is the control of the errohia &verage
ion model. Indeed, as soon as the off-diagonal correlatignsh # [
become significant, there is a strong suspicion that thdtsasiotained with
the average ion model are far from what is obtained with therescopic
(detailed) model.

4. NUMERICAL SIMULATIONS

We present in this section some figures in order to illustifagéeadvan-
tages and the drawbacks of our new intermediary model.

For each figure, we represent (for some léwghe functionsf;, (obtained
by solving the microscopic equationf),il) obtained by solving the average
ion model (in the form introduced in [CDRY]), an‘df), obtained by solving
the intermediary model.

The results have been obtained thanks to the use of a staseendd
order explicit scheme for ODEs (16929 ODEs are solved in ticeascopic
model, 5 in the model of average ion, and 15 in the intermgdraydel)

The values of the functions and parameters used in the siondaare
the same as in [CDR]:
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The shells are built according to the first quantum numbethaoD,, =
2n2. Only N = 4 shells (plus the continuum) are introduced.

The screening effect (that, is, the effective charge of tdeus seen by
an electron) is modeled by

ZUEVES SIS
h<n

Then the energy of each level is that of the hydrogenic atamected by
the screening effect defined above:

2

. Z* 2
E.(f) = 0.0136% keV .

The rates of transition (fot < m) are given by

an _ En—Em
an = = = T 5
En - Eme
_En
Rnc = Rnc [1 _E€2 - } 6_% )

In those formulas, we have used the following valuesfgy,, (taken
from [DR]):
~4.99 x 10710 f(n,m) gnm Ne

VT ’
Roe =345 x 100" N.VT T, ,
with the Gaunt factor,,, = 0.361, and the values(1,2) = 0.4161,
f(1,3) = 0.0792, f(1,4) = 0.029, f(2,3) = 0.637, f(2,4) = 0.119,
f(3,4) = 0.8408. Moreover, we take
[, =2.8014 ¢ 75 |

and for the electron number density:

6.02 x 10?3
- 002x10%p /.
M
wherep is the plasma mass density (takerbas 10~2g cm™=3), Z* is given

by formula (6),7 is the atomic number of the atom (taken>8$ and M is
the mass number of the atom (takenl a8).

Finally, the constanC’r appearing in the process of ionization is taken
equal to

an

__r

3ITMT:

and the temperaturg of the bath (inkeV’) is chosen in a different way for
the different numerical simulations.

Cr =
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We first check the validity of the model defined in Section 3ha va-
lidity range of the average ion model discussed in [CDR]: €DR] we
take as initial datum a factorized equilibrium distributiat a given tem-
peraturely, which differs from the temperatufg of the bath. In figures 1
and 2 we show the results of simulations corresponding resghe high
temperature limit Ty, = 4.3 keV andT = 4.5 keV') and to the asymptotics
in which levels are all either almost full or almost emgly & 1.7 kel and
T = 1.9 keV). The curves corresponding to the microscopic model, to the
average ion model and to the intermediary model are indjsighable.

0.0391 T T T T T T T T
fi(t) ——
0.039 Pilj)(t) —
- POy

0.0389
0.0388
0.0387
0.0386
0.0385 -
0.0384
0.0383 -

0.0382 -

0.0381

FIGURE 1. Occupation numberg (¢) for the microscopic
model, P (¢) for the average ion model, ang* (¢) for
the intermediary model in the high temperature limit, with
Ty = 4.3 keV andT = 4.5 keV.

We analyze then the case where the initial datum is stilliglwe a fac-
torized distribution, but witii, = 0.6 keV andT = 0.9 keV. For such
an initial datum, the system is out of the validity range &f Hverage ion
model presented in [CDR]. We can see in figure 3 that the new hede
closer to the microscopic curve than the old one.
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0.023 T T T T T T T

by ——

P2Xt)
0.0225 p(zl)(t) %

0.022 -
0.0215
0.021 -
0.0205

0.02
0.0195
0.019 -

0.0185

0.018 1 1 1 1 1 1 1 1 1

FIGURE 2. Occupation numberg,(t) for the microscopic
model, P{"(t) for the average ion model, andl” () for

the intermediary model in the asymptotics when all level are
either almost full or almost empty, withy = 1.7 kel and
T=19keV.

We give finally in Fig. 4 and Fig. 5 the results of simulatioresre-
sponding to two initial data quite far from the validity regiof the average
ion model. In the simulation illustrated in Fig. 4, the ialtdatum is far
from equilibrium, in the one in Fig. 5 the initial datum is &farized equi-
librium distribution at temperaturé, = 0.8 keV and the temperature of
the bath iST" = 0.4 keV (the system cools down). As we can see, in the
first case (Fig. 4), although the average ion model reprodaoectly the
trend to the equilibrium of the system, the evolution ddsextiby the refined
model is definitely much closer to the microscopic evolutioan the stan-
dard one, while in the second case (Fig. 5), both the avemageodel and
the intermediary model fail, but the intermediary moddl gives a better
approximation to the microscopic evolution than the averag model (in
particular in a time interval near to= 0).

50
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2 | | T —

0 500 1000 1500 2000 2500 3000

FIGURE 3. Occupation numberg,(t) for the microscopic

model, P\" (t) for the average ion model, aig)” (¢) for the
intermediary model, withy = 0.6 keV andT = 0.9 keV'.
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FIGURE 4. Occupation numberg,(t) for the microscopic

model, P\" (t) for the average ion model, aig)” (¢) for the
intermediary model for an initial datum far from equilib-
rium.
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FIGURE 5. Occupation numberg,(t) for the microscopic
model, P{"(t) for the average ion model, andl” () for
the intermediary model for an initial factorized equililom
distribution at temperaturg&, = 0.8 keV andT = 0.4 keV'.



