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1 Introduction. The CGL5 and CGL3 equa-

tions

When a system is governed by an autonomous nonlinear algebraic partial
differential equation (PDE), it frequently admits permanent profile struc-
tures such as fronts, pulses, sinks, etc [28], and usually these profiles are
mathematically some singlevalued solution of the traveling wave reduction
(x, t) → x− ct of the PDE to an ordinary differential equation (ODE).

When the field is a slowly varying complex amplitude A, the simplest
equation involving time evolution, dispersion, nonlinearity and forcing is the
one-dimensional complex Ginzburg-Landau equation

iAt + pAxx + q|A|2A + r|A|4A− iγA = 0, (A, p, q, r) ∈ C, γ ∈ R. (1)

We only consider in this class the equations which have the worst singular-
ity structure, the cubic one (CGL3, r = 0, Im(q/p) 6= 0) and the cubic-quintic
one (CGL5, Im(r/p) 6= 0). For a summary of results, see the reviews [1, 28].

CGL5 depends on seven real parameters. Its travelling wave reduction

A(x, t) =
√

M(ξ)ei(−ωt + ϕ(ξ)), ξ = x− ct, (c, ω, M,ϕ) ∈ R, (2)

M ′′

2M
− M ′2

4M2
+ iϕ′′ − ϕ′2 + iϕ′

M ′

M
− i

c

2p

M ′

M
+

c

p
ϕ′ +

q

p
M +

r

p
M2

+
ω − iγ

p
= 0, (3)

depends on eight real parameters, denoted er, ei, dr, di, sr, si, gr, gi,

er + iei =
r

p
, dr + idi =

q

p
, sr − isi =

1

p
,

gr + igi =
γ + iω

p
+

c2sr

4
(2si + isr). (4)

The fact of taking account of the phase invariance [28]

ϕ′ = ψ + Re
c

2p
, (5)

further reduces them to the seven real parameters er, ei, dr, di, gr, gi, csi ≡ κi.
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This third order system (3) can be written either as a real two-component
rational system in the real variables (M, ψ),





M ′′

2M
− M ′2

4M2
− κi

M ′

2M
− ψ2 + erM

2 + drM + gi = 0,

ψ′ + ψ
M ′

M
− κiψ + eiM

2 + diM − gr = 0,
(6)

or, by elimination of ψ, as a real third order second degree ODE in M [20]

ψ =
2κiG−G′

2M2(eiM2 + diM − gr)
, ψ2 =

G

M2
, (7)

(G′ − 2κiG)2 − 4GM2(eiM
2 + diM − gr)

2 = 0, (8)

G =
1

2
MM ′′ − 1

4
M ′2 − κi

2
MM ′ + erM

4 + drM
3 + giM

2. (9)

The purpose of this work is to show that, for all values of the seven
parameters, all meromorphic particular solutions M of CGL3 and CGL5
belong to class W (like Weierstrass), defined as consisting of elliptic functions
and their successive degeneracies, i.e.: elliptic functions (meromorphic doubly
periodic), rational functions of one exponential ekξ, k ∈ C, rational functions
of ξ. The assumption M meromorphic implies the same property for the
variables M ′/M, ψ and the logarithmic derivative of the complex amplitude
Aeiωt,

B :=
d

dξ
log

(
Aeiωt− icsrξ/2

)
=

M ′

2M
+ iψ. (10)

In case qκi = 0, the real system (6) displays a parity invariance,

q = 0 : (M, ψ, ξ) → (−M, ψ, ξ), (11)

κi = 0 : (M, ψ, ξ) → (M,−ψ,−ξ). (12)

This paper presents results complementary to those of [8]. Section 2 recalls
the singularities of M and ψ. In section 3, we prove that, for all values of the
seven real parameters, any meromorphic solution M of (6) is in class W . In
section 4, we recall a method to obtain all the elliptic or degenerate elliptic
solutions M , and present the first order ODE for M(ξ) characterizing the
recently obtained elliptic solution [8]. Finally, section 5 is devoted to the
construction of canonical expressions to represent this elliptic solution.
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2 Movable singularities of CGL3 and CGL5

Our interest is to count the number of distinct Laurent series for M and
ψ. The results, obtained in [3] for CGL3 and in [23, 8] for CGL5, are the
following.

A first set of poles χ1 = ξ− ξ1 → 0 for both M and ψ arises by balancing
Axx and the highest nonlinearity (|A|2A for CGL3, |A|4A for CGL5),

CGL3 : A ∼ A0χ
−1+iα
1 , A ∼ A0χ

−1−iα
1 , (1− iα)(2− iα)p + A2

0q = 0, (13)

CGL5 : A ∼ A0χ
− 1

2
+iα

1 , A ∼ A0χ
− 1

2
−iα

1 , (
1

2
− iα)(

3

2
− iα)p + A4

0r = 0,(14)

they define two real values α and two real values A2
0 (CGL3) and A4

0 (CGL5),

CGL3 : diα
2 − 3dr − 2di = 0, A2

0 = 3α/di, (15)

CGL5 : 4eiα
2 − 8er − 3ei = 0, A4

0 = 2α/ei, (16)

and the Fuchs indices are −1, 0 and two irrational numbers

CGL3 : indices =− 1, 0, (7±
√

1− 24α2)/2, (17)

CGL5 : indices =− 1, 0, (5±
√

1− 32α2)/2. (18)

For CGL3, M presents double poles and ψ simple poles,

M = m0χ
−2
1

[
1 +

κi

3
χ1 +O(χ2

1)
]
, m0 = A2

0, (19)

ψ =
dim0

3
χ−1

1

[
1 +

κi

6
χ1 +O(χ2

1)
]
, (20)

and for CGL5 M and ψ present simple poles,

M = m0χ
−1
1

[
1 +

(
κi

4
+

2drm0 − 2eidim
3
0

4(1 + e2
i m

4
0)

)
χ1 +O(χ2

1)

]
, m0 = A2

0, (21)

ψ =
eim

2
0

2
χ−1

1 +
eim

2
0

8
κi + m0

4di + 5eidrm
2
0 − e2

i dim
4
0

4(1 + e2
i m

4
0)

+O(χ1), (22)

in which both invariances (11)–(12) require changing m0 to −m0. The num-
ber of distinct Laurent series M near χ1 is two (CGL3) or four (CGL5), and
the number of series ψ is two (CGL3), four (CGL5 q 6= 0) or two (CGL5
q = 0).
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A second set of singularities is easier to compute from the system (6),

1

M
=

1

M0

χ−1
2

[
1 + M1χ2 +

{
M2

1 + κiM1 − j

3
gr +

2

3
gi

}
χ2

2 +O(χ3
2)

]
, (23)

ψ =
j

2
χ−1

2

[
1 + (κi + M1) χ2 +

{
M2

1 + 2κiM1 +
2

3
gi − 4j

3
gr +

5

6
κ2

i

}
χ2

2

+
1

2

{
(gr + jgi)κi +

3jκ3
i

4
− (3di − jdr)M0

4
+

(11jκ2
i + 4gr + 4jgi)M1

4

+ 3jκiM
2
1 + jM3

1

}
χ3

2 +O(χ4
2)

]
, (24)

in which M0, M1 are arbitrary constants, and j2 = −1. Invariances (11)–
(12) require changing M0 to −M0, with M1 = 0 when κi = 0. This defines
either 2N (when q 6= 0) or N (when q = 0) simple poles of ψ, with N an
undetermined integer. A direct study [8] of the third order ODEs for M and
ψ shows that neither M nor ψ admit other movable poles.

For CGL3 (resp. CGL5), M and ψM admit two (resp. four) Laurent
series.

3 Results from Clunie’s lemma

For convenience, ξ will be denoted as z in this section only. We shall prove

Theorem 1 For all values of the constants p, q, r, γ, c, ω, all meromorphic
traveling wave solutions M of CGL3 and CGL5 equations belong to class W .

The method we use is a refinement of Eremenko’s method developed
in [10] as well as [11, 12, 7], based on the local singularity analysis of the
solutions of the given differential equation and on the zero distribution and
growth rate of their meromorphic solutions by using Nevanlinna theory.

Several partial results have been previously obtained [24, 17, 29] for find-
ing solutions of (8), but they are incomplete and Theorem 1 settles the ques-
tion. These previous results are the following.

1. For CGL3, when dr 6= 0, all solutions belonging to class W have been
found [24]: there are six distinct solutions which are rational functions
in one exponential function and there is no elliptic solution.

2. For CGL3, when κi 6= 0, there exists no elliptic solution [17].
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3. For CGL5, when κi = 0, there exists exactly one elliptic solution [29].

Let us recall a definition. For a differential polynomial of f ,

P (z, f) =
∑

ajf
j0(f ′)j1 · · · (f (k))jk ,

where j = (j0, ..., jk) is a multi-index and f and aj are meromorphic func-
tions, the sum j0+...+jk is called the degree of the monomial ajf

j0(f ′)j1 · · · (f (k))jk .
The total degree of P (z, f) is defined as the maximum of the degrees of its
monomials.

We shall assume the readers are familiar with the terminology and results
of Nevanlinna theory [15, 21, 25] (see [11] for a quick introduction). Here, we
recall some basic notations of Nevanlinna theory. Let f be a non-constant
meromorphic function on the open disc D(r) = {z : |z| < r} where r.
Denote the number of poles of f on the closed disc D(r) by n(r, f), counting
multiplicity. Define the integrated counting function N(r, f) by N(r, f) =
n(0, f) log r +

∫ r

0
[n(t, f)− n(0, f)] dt

t
and the proximity function m(r, f) by

m(r, f) =
∫ 2π

0
log+ f(reiθ) dθ

2π
, where log+ x = max {0, log x}. Finally, the

Nevanlinna characteristic function T (r, f) is defined by T (r, f) = m(r, f) +

N(r, f) and we let S(r, f) be a term such that S(r,f)
T (r,f)

→ 0 , as r → +∞.
To prove Theorem 1, we make use of the well known Clunie’s Lemma,

Lemma 1 [21, 2.4.2] Let f be a transcendental meromorphic solution of

fnP (z, f) = Q(z, f), (25)

with n a positive integer, P and Q differential polynomials of f with mero-
morphic coefficients aλ such that m(r, aλ) = S(r, f). If the total degree of Q
is less than or equal to n, then

m(r, P (z, f)) = S(r, f). (26)

Actually, all we need is the following corollary of Clunie’s Lemma.

Corollary 1 Let f be a transcendental meromorphic solution of the ODE

fn+1 = Q(z, f), (27)

with n a positive integer and Q a differential polynomial of f with meromor-
phic coefficients aλ such that m(r, aλ) = S(r, f). If the total degree of Q is
less than or equal to n, then f must have infinitely many poles.
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Proof of Corollary 1.
Taking P (z, f) = f in Lemma 1, we conclude that m(r, f) = S(r, f),

and therefore (1 − o(1))T (r, f) = N(r, f). Assume that f has finitely many
poles. Then N(r, f) = O(log r), and therefore T (r, f) = O(log r), which is
impossible since f is transcendental. QED.
Proof of Theorem 1

Let M be a solution of (8) which is meromorphic in the complex plane. If
M is rational, then we are done. So suppose M is transcendental and let us
prove that M has infinitely many poles. We first rewrite the second equation
of (6) as

(ψM)′ − κi(ψM) + eiM
3 + diM

2 − grM = 0. (28)

It follows easily that if ψ has infinitely many poles, then so does M .
We first show that if ψ is transcendental, then ψ has infinitely many poles

and hence so does M . One can build an ODE for ψ(z) via the elimination
of M between the system (6). This third order ODE is given as follows,

CGL5 : e2
i (5e

2
i + e2

r)
2ψ20 = Q(z, ψ), (29)

CGL3 : di(3d
2
i + d2

r)ψ
10 = Q(z, ψ), (30)

where the differential polynomial Q(z, ψ) has the total degree 19 (CGL5 case)
or 9 (CGL3 case). Applying Corollary 1 to (29) and (30), we conclude that

ψ and therefore M must have infinitely many poles.
Now suppose ψ is rational, then it is well known that T (r, ψ) = O(log r)

and T (r, ψ′) = O(log r), and therefore m(r, ψ) = S(r, f) and so is m(r, ψ′)
since M is transcendental. Now (28) can be written as eiM

3 = −ψ′M−ψM+
(κiψ)M−diM

2 +grM and applying Corollary 1 to it, we again conclude that
M has infinitely many poles.

Secondly, knowing that the transcendental meromorphic solution M has
infinitely many poles, let us prove that it is a periodic function. By the local
singularity analysis (section 2), if z0 is a pole of M , CGL3 (resp. CGL5)
admits exactly two (resp. four) Laurent series M with poles at z = z0 obeying
the ODE (8). Now let zj, j = 1, 2, 3, · · · be the poles of M(z); the functions
wj(z) = M(z + zj − z0) are then meromorphic solutions of the ODE (8) with
a pole at z0, therefore some of them must be equal. Consequently, M is a
periodic function.

Without loss of generality, we assume that M has a period of 2πi. Let
D = {z : 0 ≤ Imz < 2π}. If M has more than three (CGL3) or five (CGL5)
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poles in D, then by the previous argument we conclude that M is periodic
in D and therefore is indeed an elliptic function and we are done.

Now suppose M has at most two (CGL3) or four (CGL5) poles in D.
Since M is a periodic function with period 2πi, we have N(r,M) = O(r),
as r → ∞. It follows from (1 − o(1))T (r,M) = N(r,M) that T (r,M) =
O(r). By Nevanlinna’s First Fundamental Theorem, we know that for any
a ∈ C, N(r, 1/(M − a)) = O(r) as r → ∞. By the periodicity of M , we
conclude that M takes each a finitely many times in D. Hence, the function
R(z) = M(ln z) is a single-valued analytic function in the punctured plane
{z : 0 < |z| < ∞} and takes each a finitely many times. It follows that
0 is a removable singularity of R, and R must then be a rational function.
Therefore, M(z) = R(ez) belongs to class W . QED.

4 A method to determine all solutions in class

W

Consider an N -th order autonomous algebraic ODE,

E(u(N), ..., u′, u) = 0, ′ = d/dx, (31)

admitting at least one Laurent series

u = χp

+∞∑
j=0

ujχ
j, χ = x− x0. (32)

There exists an algorithm [24] to find in closed form all its elliptic or
degenerate elliptic solutions. Its successive steps are [6, 5]:

1. Find the structure of movable singularities (e.g., 4 families of simple
poles). For each subset of families (e.g. 2 families of simple poles)
deduce the elliptic orders m,n (e.g. m = 2, n = 4) of u, u′ and perform
the next steps.

2. Compute slightly more than (m + 1)2 terms in the Laurent series.

3. Define the first order m-th degree subequation

F (u, u′) ≡
m∑

k=0

2m−2k∑
j=0

aj,ku
ju′k = 0, a0,m 6= 0. (33)
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According to results of Briot-Bouquet and Painlevé [6], any solution
of (31) in class W must obey such an ODE, called a “subequation”
because (next step) it admits (31) as a differential consequence.

4. Require each Laurent series (32) to obey F (u, u′) = 0,

F ≡ χm(p−1)

(
J∑

j=0

Fjχ
j +O(χJ+1)

)
, ∀j : Fj = 0. (34)

and solve this linear overdetermined system for aj,k.

5. Integrate each resulting ODE F (u, u′) = 0.

A similar method has later been developed [9], which also takes advan-
tage of the Laurent series and directly searches for a canonical closed form
representation of the elliptic solutions and their degeneracies.

Theorem 1 implies that the subequation method is indeed able to find all
the meromorphic traveling wave solutions of the CGL3 and CGL5 equations.

For CGL5, the subequation method has produced a new elliptic solution
[8], characterized by the first order, fourth degree, genus one ODE

F4 ≡ M ′4 − 2κiMM ′3 +
72

ei

e1M
′2(eiM

2 − 12e0) +
2438e4

1

e2
i

+
648e2

1

e2
i

(
288e2

0 + 24eie0M
2 − e2

i M
4
)− 1

34ei

M2
(
eiM

2 − 48e0

)3
= 0, (35)

κ2
i = 48e1, gr = 36e0, er = dr = di = 0, gi = − 3

16
κ2

i . (36)

5 Integration of subequation (35)

Let us first recall the differential equations of Weierstrass

℘′2 = 4℘3 − g2℘− g3, ζ ′ = −℘, (log σ)′ = ζ. (37)

Apart the representation as a rational function of ℘ and ℘′,

polynomial(℘) + polynomial(℘)℘′

polynomial(℘)
, (38)
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elliptic functions have two main decompositions, either as a sum

C +
N∑

j=1

(
rj ζ(ξ − aj) +

M∑

k=0

cj,k℘
(k)(ξ − aj)

)
,

N∑
j=1

rj = 0, (39)

in which C, rj, aj, cj,k are complex constants (aj distinct), or as a quotient of
two products of an equal number of entire functions σ,

constant
P∏

j=1

σ(ξ − αj)

σ(ξ − βj)
,

P∑
j=1

αj − βj = 0, (40)

in which αj, βj are not necessarily distinct complex constants.
To obtain the complex amplitude A, which is not elliptic, one can either

compute the couple (M,ψ) then perform the quadrature
∫

ψ dξ, or compute
the logarithmic derivative B, Eq. (10), then perform the quadrature

∫
B dξ.

By elimination with (7), one first deduces the real subequation for ψ,

κiψ
′4 − 4κiψ

′3 (κiψ + 24e0)

+8ψ′2
(
− κi(27e2

1 − 324e2
0) + 1440e1e0ψ + 27κie1ψ

2 + 16e0ψ
3 +

1

3
κiψ

4
)

+16
(
− 1

3
κiψ

8 − 32

3
e0ψ

7 − 26κie1ψ
6 − 1632e1e0ψ

5 − (
477e2

1 + 552e2
0

)
ψ4

−288
(
165e2

1 + 4e2
0

)
ψ3 + κi

(
2106e2

1 − 31320e2
0

)
ψ2

+ 2736
(
e2
1 − 4e2

0

)
e1e0ψ + 243

(−9e4
1 + 56e2

1e
2
0 − 144e4

0

) )
= 0, (41)

then the complex subequation for B as defined Eq. (10),

(2B′ + κiB + 24ie0) (B′ − κiB − 24ie0)
2

+2−11
(
16(4B3 − 3κiB

2)− 9(κ2
i + 64ie0)(4B + κi)

)2
= 0. (42)

The degree of subequation (41) drops from four to two when κi = 0. As
to (42), it has degree three and therefore belongs to the so-called trinomial
type integrated by Briot and Bouquet [2, §250–251 p. 395].

Let us derive decompositions (39) or (40) for the solution of genus one
equations (35) for M , (41) for ψ or (42) for B. Three steps are required.

– The first step is to represent the solution as a rational function of ℘(ξ−ξ0)
and ℘′(ξ− ξ0), in which ξ0 is arbitrary, and to write it in the canonical

10



form (38). Because of the existence of an addition formula for ℘,

∀x1, x2 : ℘(x1 + x2) + ℘(x1) + ℘(x2) =
1

4

(
℘′(x1)− ℘′(x2)

℘(x1)− ℘(x2)

)2

,(43)

such a canonical form (38) is not unique, and general algorithms may
yield messy expressions by performing a shift on ξ0. For instance,
with the (otherwise powerful) command Weierstrassform [16] of the
computer algebra language Maple [22], which applies to any genus one
equation, the ODE

u′2 = u4 − u3 + u2 + u + 7 (44)

is integrated as the second degree rational function

u = 3
12℘ + 24

√
7℘′

144℘2 − 24℘− 251
, g2 =

22

3
, g3 =

277

432
, (45)

while a first degree rational function c0 + c1/(℘− c2) is sufficient. The
same occurs with the algorithm of Briot and Bouquet [2, §250–251
p. 395] to integrate binomial or trinomial equations: with (42), in-
stead of yielding a second degree rational function rational in the fixed
constants (see (50) below), it yields a third degree rational function
algebraic in the fixed constants. Consequently, the practical method
used here is to determine the smallest degrees of the three polynomials
in (38), then their coefficients by identification. One thus finds for the
solution M of (35),





M =
8N0(3e1 + 4je0)(℘− e1)[3e1℘

2 + 4(3e2
1 + 4e2

0)℘ + 4e1(3e
2
1 + 5e2

0)]

24(3e1 + 4je0)(℘− e1)(℘2 − 2e1℘− 8e2
1 − 12e2

0) + κiPM
2 ℘′

,

PM
2 = ℘2 + 4(e1 + je0)℘ + 4e2

1 − 4je1e0 + 12e2
0, j2 = −1,

N2
0 = − 324je2

1

ei(3e1 + 4je0)
,

℘ := ℘(ξ − ξM
0 , g2, g3),

℘′2 = 4(℘− e1)(℘
2 + e1℘ + 7e2

1 + 12e2
0),

g2 = −24(e2
1 + 2e2

0), g3 = 4(7e2
1 + 12e2

0)e1.

(46)

This expression will simplify greatly as (60). Because of the correspon-
dence (7), the solution ψ of (41) involves the same square root j of −1
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as in (46). When κi is nonzero this is





ψ = −jκi(9e1 − 4je0)

24e1

+
Pψ

2 + Qψ
2 ℘′

12e1(3e1℘ + 15e2
1 + 16e2

0)((℘ + 2e1)2 + 3(3e1 + 4je0)2)
,

Pψ
2 = −jκi(3e1 + 4je0)[(3e1 + 2je0)((9e1 − 4je0)℘

2 + 2(−9e1 − 44je0)e1℘)
− 945e4

1 − 1434je3
1e0 − 1192e2

0e
2
1 − 1440je3

0e1 − 384e4
0],

Qψ
2 = 9je1(e1(℘

2 + 22℘e1 + 24j℘e0) + 121e3
1 + 48e1e

2
0 + 192je2

1e0 + 128je3
0),

℘ := ℘(ξ − ξM
0 , G2, G3),

℘′2 = 4(℘ + 2e1)(℘
2 − 2e1℘− 35e2

1 − 48e2
0),

G2 = 12(13e2
1 + 16e2

0), G3 = 8(35e2
1 + 48e2

0)e1,

(47)

while for κi = 0 it is

κi = 0 : ψ =

√
6j
√

3e0

(
1 +

8j
√

3e0

℘(ξ − ξM
0 , 192e2

0, 0)− 4j
√

3e0

)
, (48)

or simply (but with yet another g2),

κi = 0 : ψ =

√
3

2

√
℘(ξ − ξM

0 ,−768e2
0, 0). (49)

Finally, the solution B of (42) is expressed as,





B =
κi

2
− 6κi(3e1 + 4ie0)

2 + (℘ + 2e1 + 3(3e1 + 4ie0))℘
′

2((℘ + 2e1)2 + 3(3e1 + 4ie0)2)
,

℘ := ℘(ξ − ξB
0 , G2, G3),

(50)

The properties of the above three expressions are: all coefficients (ex-
cept the global factor N0) are rational in (κi, gr), the two different
Weierstrass functions ℘(., g2, g3) and ℘(., G2, G3) are linked by a Lan-
den transformation (Appendix A), the relation (10) between B, M, ψ
holds true when the square root j of −1 is equal to +i and the constant
origins ξM

0 , ξB
0 are equal.

The degeneracy ∆ = 0 implies g2 = g3 = 0, i.e. it directly defines the
reducible subequation (3M ′)4−e2

i M
8 = 0, whose solutions are rational.

Because of this, even a four-family extension of the method used in [23]
would fail for CGL5.
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– The second step is to compute the partial fraction decomposition of the
rational functions (38) of the variable ℘, considering for a moment
℘′ as a parameter. The rational function (46), once converted to the
canonical form (38), admits four poles for each choice of j, and we
characterize their affixes ξM

j,k by choosing the signs of ℘′(ξM
j,k, g2, g3) as

follows,





℘(ξM
j,k, g2, g3) =

(
−3 + 3(jk +

√
3j1−k)ρ + (−1)kρ2

)
e1/6,

℘′(ξM
j,k, g2, g3) = (9jk + 3((−1)1+k − j

√
3)ρ + j2−kρ2)e1κiρ/36,

e1ρ
2 = 3j

√
3(3e1 + 4je0), j = ±i, k = 1, 2, 3, 4.

(51)

The rational function (47) admits one real pole and, for each j = ±i,
two complex poles similarly characterized as follows,

κi 6= 0 :

{
℘(ξψ

j , G2, G3) = −5e1 − 16e2
0/(3e1),

℘′(ξψ
j , G2, G3) = −2jκie0(9e

2
1 + 16e2

0/(9e
2
1), j = ±i,

(52)

{
℘(ξψ

j,k, G2, G3) = −2e1 + (−1)kj
√

3(3e1 + 4je0), j = ±i, k = 0, 1,

℘′(ξψ
j,k, G2, G3) = (3− (−1)kj

√
3)κi(3e1 + 4je0)/2.

(53)

Finally, the two poles of (50) are just ℘(ξψ
i,k, G2, G3).

Modulo the periods of ℘(., G2, G3), the affixes of these poles obey

ξψ
j,0 + ξψ

j,1 − ξψ
j : ℘ = −2e1, ℘′ = 0, ζ = H1 (half-period),(54)

ξψ
j,0 + ξψ

j,1 : ℘ = 7e1, ℘′ = −6jκie0, (55)

ξψ
j,0 − ξψ

j,1 : ℘ = −5e1, ℘′ = −2
√

3κie0, (56)

ξψ
j,k + ξψ

−j,1−k − ξψ
j : ℘ = ∞, ℘′ = ∞ (period). (57)

The Landen transformation maps ℘(ξM
j,2, g2, g3) and ℘(ξM

j,4, g2, g3) to

℘(ξψ
j,0, G2, G3), and maps ℘(ξM

j,1, g2, g3) and ℘(ξM
j,3, g2, g3) to ℘(ξψ

j,1, G2, G3).

Expressions (46), (47), (50) thus evaluate to the sum

constant +
4∑

j=1

constant + constant ℘′(ξ − ξ0)

℘(ξ − ξ0)− ℘(ξj)
. (58)
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– The third step is, using the classical identities

∀u, v :





ζ(u + v) + ζ(u− v)− 2ζ(u) =
℘′(u)

℘(u)− ℘(v)
,

ζ(u + v)− ζ(u− v)− 2ζ(v) =
−℘′(v)

℘(u)− ℘(v)
,

(59)

to convert (58) into a finite sum of ζ functions.

The result for (46),

∀κi : M =
31/4

√−ei

4∑

k=1

jk−1
(
ζ(ξ − ξM

j,k, g2, g3) + ζ(ξM
j,k, g2, g3)

)
, j2 = −1,(60)

clearly displays the four simple poles.
As to the three simple pole variables B,ψ, M ′/M , their decompositions

evaluate to (we abbreviate ζ(., G2, G3) to ζ(.) )





∀κi :
d

dξ
log

(
Ae

iωt− i
csr

2
ξ
)

=
κi

2
+ ζ(ξ) +

(
−1 + i

√
3

2

) (
ζ(ξ − ξψ

i,0) + ζ(ξψ
i,0)

)

+

(
−1− i

√
3

2

)(
ζ(ξ − ξψ

i,1) + ζ(ξψ
i,1)

)
,

κi 6= 0 : ψ = −j
9e1 − 4je0

24e1

κi +
j

2

(
ζ(ξ − ξψ

j ) + ζ(ξψ
j )− ζ(ξ))

)

+

√
3

2

(
ζ(ξ − ξψ

j,0) + ζ(ξψ
j,0)− ζ(ξ − ξψ

j,1)− ζ(ξψ
j,1)

)
,

κi 6= 0 :
M ′

M
=

3e1 + 4je0

12e1

κi + ζ(ξ − ξψ
j ) + ζ(ξψ

j ) + ζ(ξ)

−
(
ζ(ξ − ξψ

j,0) + ζ(ξψ
j,0) + ζ(ξ − ξψ

j,1) + ζ(ξψ
j,1))

)
.

(61)

The choice j = +i must be made for (10) to hold true, while the choice
j = −i corresponds to the relation

d

dξ
log

(
Ae
−iωt + i

csr

2
ξ
)

=
M ′

2M
− iψ. (62)

Before taking the quadrature of the above three expressions (61), let us
recall the definition of the élément simple [14, vol. II, p. 506] introduced by
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Hermite for integrating the Lamé equation,

H(ξ, q, k) =
σ(ξ + q)

σ(ξ)σ(q)
e(k−ζ(q))ξ, (k, q) constants. (63)

Its only singularity is a simple pole with residue unity at the origin.
Equations (61)1 and (61)3 then integrate as

∀κi : A = K0e
−iωt + i

cξ

2p H(ξ,−ξψ
i,0, 0)(−1+i

√
3)/2

H(ξ,−ξψ
i,1, 0)(−1−i

√
3)/2, (64)

κi 6= 0 : M = K1e

3e1 + 4je0

12e1

κiξ
H(ξ,−ξψ

j , 0) H(ξ,−ξψ
j,0, 0)−1

H(ξ,−ξψ
j,1, 0)−1.(65)

The integration constants K0, K1 are determined by requiring that, near the
simple pole χ1 = ξ−ξψ

j,0 → 0 of M , the variables A and M admit the principal

parts A ∼ A0χ
(−1+i

√
3)/2

1 , M ∼ A2
0χ

−1
1 , A8

0 = 3/e2
i , see (14) and (21).

In order to check that the product of the complex amplitude A (64) by
its complex conjugate is equal to the decomposition (65), one must take
account of (57) and remember that the origin of ξ, not displayed in the
above formulae, depends on j and is therefore different for A and its complex
conjugate.

The restriction κi 6= 0 in (65) is removed by taking into account the
relation

ζ(ξψ
j,0) + ζ(ξψ

j,1)− ζ(ξψ
j ) = ζ(ξψ

j,0 + ξψ
j,1 − ξψ

j ) + κi/4 + jκie0/(3e1),(66)

and using the definition (54), yielding

M = −K1e
−H1ξ

σ(ξ − ξψ
j )σ(ξ)

σ(ξ − ξψ
j,0)σ(ξ − ξψ

j,1)

σ(ξψ
j,0)σ(ξψ

j,1)

σ(ξψ
j )

. (67)

In order to check the equality of the two decompositions of M as the sum
(60) and the product (67), it is sufficient to convert the elliptic function (67)
to a rational function of ℘(ξ, G2, G3) and its derivative, then to identify it to
(46) modulo the Landen transformation (Appendix A).

Numerical simulations with periodic boundary conditions [27, Fig. 4] do
display solutions M having a real period (similar features are observed in
CGL3 [4, Fig. 7]), these could well correspond to the present elliptic solution.
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Remark. The elliptic (hence singlevalued) nature of d log(Aeiωt)/dξ ex-
plains the so-called “ad hoc Hirota method” [26] in which A is essentially
assumed to be a product of powers of entire functions, the powers being
those of the singularity structure, here (−1± i

√
3)/2. In order to recover our

result (64), two upgrades to this method are needed: (i) to assume A to be
a product of powers of Hermite’s simple elements (63), not of Weierstrass σ
functions or Jacobi θ functions, so as to ensure that the logarithmic deriva-
tive of A is elliptic; (ii) to allow arbitrary shifts ξj in the arguments of the
entire functions, not only half periods like with the choice θj(ξ), j = 0, 1, 2, 3
in the Jacobi notation.

Appendix A. Landen transformation

We are indebted to the grateful indications of Yuri Brezhnev for this ap-
pendix.

The Landen or Gauss transformation consists in halving only one of the
two periods, it is naturally defined [18] [19, p. 384] in the notation of ℘
displaying the two periods 2ω, 2ω′,

℘(x|ω, 2ω′) = ℘(x|2ω, 2ω′) + ℘(x− ω|2ω, 2ω′)− ℘(ω|2ω, 2ω′). (68)

In the other usual notation




℘(x,G2, G3) = ℘(x|ω, 2ω′), ℘1(x, g2, g3) = ℘(x|2ω, 2ω′),
℘′2 = 4(℘3 − g2℘− g3) = 4(℘− e1)(℘− e2)(℘− e3),

℘′1
2

= 4(℘3
1 −G2℘1 −G3) = 4(℘1 − E1)(℘1 − E2)(℘1 − E3),

(69)

the expression of ℘(x|ω, 2ω′) as a rational function of ℘(x|2ω, 2ω′) is

℘(x,G2, G3) = ℘(x, g2, g3)− g2 − 12e2
1

4(℘(x, g2, g3)− e1)
, (70)

and similarly at the ζ and σ levels [19, Eqs. (16b), (17b)]

ζ(x,G2, G3) = ζ(x, g2, g3) + ζ(x− ω, g2, g3)− e1x + ζ(ω, g2, g3), (71)

σ(x,G2, G3) = ee1x
2/2− ζ(ω, g2, g3)x σ(x, g2, g3)σ(x + ω, g2, g3)

σ(ω, g2, g3)
.(72)
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Between ej, Ej (and gk, Gk), there exist two algebraic relations





E1 = −2e1, (E2 − E3)
2 = 36e2

1 − 4(e2 − e3)
2,

−32g2g3 + 22g3G2 + 11g2G3 −G2G3 = 0,
196g3

2 + 49g2
2G2 − 7260g2

3 + 660g3G3 − 15G2
3 = 0.

(73)

The ratio −2 of the two zeros −2e1 of ℘′1
2 in (47) and e1 of ℘′2 in (46) is the

signature of such a Landen transformation.
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