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Abstract

This paper introduces the concepts of “self-consistency” and “uni-
versality” to evaluate the validity and precision of camera lens distor-
tion models. Self-consistency is evaluated by the residual error when
the distortion generated with a certain model is corrected by the best
parameters for the same model (used in reverse way). Analogously,
universality is measured by the residual error when a model is used to
correct distortions generated by a family of other models. Five classic
camera lens distortion models are reviewed and compared for their de-
gree of self-consistency and universality. The study shows that radial
symmetric models can be self-consistent, but cannot be used for non
radial-symmetric distortion. Among the evaluated models, the poly-
nomial and the rational models are the only ones to be universal up to
precisions of 1/100 pixel. However, the polynomial model, being lin-
ear, is much simpler and faster to estimate. Unusually high polynomial
orders are required to reach a 1/100 pixel precision. But our exper-
iments show that such polynomials are easily computed, producing a
precise lens distortion correction without over-fitting. Our conclusions
are validated by three independent experimental setups: The models
are compared first in synthetic experiments by their approximation
power; second by fitting a real camera distortion estimated by a non
parametric algorithm; and finally by the absolute correction measure-
ment provided by photographs of tightly stretched strings, warranting
a high straightness. Finally, our experiments show that in the poly-
nomial model the residual errors stabilize for orders between 6 to 12,
confirming that no over-fitting occurred. High order polynomials are
unavoidable to obtain high precisions, and deliver accuracies hundred
to thousand times higher than those obtained with classic models.

1 Introduction

The pinhole camera model is widely used in computer vision appli-
cations because of its simplicity and its linearity in terms of projec-
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tive geometry [13]. But real cameras deviate from the ideal pinhole
model, mainly because of lens distortion [2]. Thus an accurate camera
lens distortion correction is the first step towards high precision 3D
metric reconstruction from photographs. With the steady progress in
lens quality and computing power, high-precision 3D reconstructions
become feasible, demanding in turn higher lens distortion precisions
than those provided by classic methods. The object of this paper is
to investigate the validity of distortion models at the light of preci-
sion requirements that over the pas decade has increased by two to
three orders of magnitude. This increased accuracy requires a new
methodology for evaluating distortion models. In a nutshell, our con-
clusion is that a polynomial model of higher degree than usual, ranging
from 8 to 15, is necessary for reaching a pixel precision ranging from
1/100 to 1/1000. The polynomial model permits to approximate at
this resolution any other model, and the inverse of any other model,
including itself. When these properties are reached, the model is called
universal and self-consistent. Among the other four models which will
be compared (radial, division, FOV, and rational), only the rational
model has the exigible self-consistency and universality, but to a far
higher computational cost. (A complex incremental minimization al-
gorithm is needed to solve the rational model, without ensuring the
global minima.)

Since the first numerical lens distortion model by Brown [2], many
methods [16, 29] have been proposed to correct lens distortion (see
[24] for a review of the development of camera calibration methods in
early years). The final aim is to obtain an ideal pinhole (or pinhole
equivalent) camera by removing lens distortion, so that the classic
multi-view geometry techniques can be applied directly.

With the exception of a few non-parametric methods [9, 6, 11],
an appropriate distortion model is indispensable to establish a correct
camera model. The main distortion models are the radial model [2],
the division model [10], the FOV model [8], the bicubic model [14], the
rational model [5, 12]. This diversity is only marginally linked to the
kind of camera. Thus, a synthetic quantitative and qualitative compar-
ison is required. Do these models reflect camera lens distortion in its
physical aspect? It could be argued that a correct model should orig-
inate from physical measurements on systems of lenses. Surprisingly
enough, there is little physical background for the distortion models
in the literature. It is true that in [28] lens distortion is decomposed
into three effects: radial distortion, decentering distortion and thin
prism distortion. But, still, it is only marginally based on a physical
background. In fact, the final distortion includes effects caused by a
complex lens system, by the camera geometry, and by the (not per-
fectly planar) shape of the captor. One is therefore led to figure out a
flexible model with enough parameters to approximate any plausible
distortion. In absence of a physical model, the model classification
approach adopted here will be to look for models which actually cope
with any other proposed distortion model, at a given precision. Such
models will be called universal. The second question is the relation-
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ship between the distortion and the correction model, which should
be inverse of each other. Indeed, the correction model and the distor-
tion model must be different. A correction model is used to correct
distorted images, while a distortion model is used to model the dis-
tortion of ideal images. In the literature, however, it seems that the
roles of distorted point and undistorted point are interchangeable, which
again confirms the lack of physical meaning for these models. For ex-
ample, direct distortion models are used in global camera calibration
[27, 31, 17, 28]. Yet, in most plumb-line methods [2, 8, 1, 21, 26, 4] or
some pattern-free methods [23, 30, 10, 18, 25, 5, 20, 3, 15], the very
same correction models are used without any fuss to approximate the
inverse distortion.

Assume we simulate a camera lens distortion with a certain model
and a certain set of parameters. Except for some trivial cases, the
distortion will not be corrected by using the same model with other
parameters, because the model itself is usually not invertible. We pro-
pose to measure the error incurring when inverting a distortion with
the same model as for the distortion. This error when the best cor-
recting parameters are applied will be a measurement of the model
self-consistency. In other words, self-consistency relates to how well
a model is able to correct distortion generated by a model of its own
family. Of course the best models should be universal, therefore able
to correct distortions generated by other models. We therefore propose
to measure a model universality as the residual error when this model
is used to correct distortion generated by a whole set of different mod-
els. A universal model is a model for which this error is very small no
matter what other (reasonable) distortion model has been applied. A
universal model must of course be also self-consistent. Our goal is to
identify the least complex universal and self-consistent models.

The various distortion models will be carefully compared on realis-
tic synthetic distortion data permitting to quantify the ideal attainable
precision. Then, the same models will be compared on their capacity
to fit a real camera lens distortion (estimated by a non-parametric al-
gorithm [11]). Finally, the lens distortion correction accuracy by each
model will be evaluated by using the plumb-line approach, with pho-
tographs of tightly stretched strings, warranting a high straightness,
and giving an absolute measure of the correction quality. In short,
there will be four different numerical validations of our conclusions.

This paper is organized as follows. Section 2 reviews five classic
distortion models. Their self-consistency and universality are evaluated
in Section 3 by synthetic experiments. Section 4 and 5 describe the
experiments done with real camera lenses. Section 6 is a conclusion.

2 Distortion and Correction models

We start by reviewing the most current models, namely the radial
model [2], the division model [10], the FOV model [8], the polynomial
model [14], and the rational function model [5, 12]. All of these mod-
els are expressed as distortion models, but are actually also used as
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correction models.
Denote by (xu, yu) an undistorted point, (xd, yd) the distorted point,

(xc, yc) the distortion center, (x̄u, ȳu) the radial undistorted point and
(x̄d, ȳd) the radial distorted point where x̄u = xu − xc, ȳu = yu − yc,
x̄d = xd − xc and ȳd = yd − yc. The distorted radius is rd =

√
x̄2

d + ȳ2
d

and the undistorted radius ru =
√
x̄2

u + ȳ2
u.

The radial model displaces a point along its radial direction orig-
inating at the distortion center. The distorted new radius rd is a
function of the original radius ru,

rd = ruf(ru) = ru(k0 + k1ru + k2r
2
u + · · · ). (1)

The parameter k0 representing a scaling does not introduce distortion.
The scaled image is distorted by k1, k2, · · · . If k1, k2, · · · are all positive,
we have a pincushion distortion; if k1, k2, · · · are all negative, a barrel
distortion. Mustache distortion occurs if the signs of k1, k2, · · · are not
the same (see Fig. 1).

Figure 1: Left: pincushion distortion. Middle: barrel distortion.
Right: mustache distortion.

The division model is nothing but the scalar inverse of the radial
model,

rd = ruf(ru) =
ru

k0 + k1ru + k2r2
u + · · ·

. (2)

In these models, the higher order coefficients are needed to model ex-
treme distortion in fish-eye lenses or other wide angle lens systems. A
more sparse representation is obtained by parameterizing the distor-
tion by the field of view (FOV),

rd = ruf(ru) = ru
tan(ruω)

2ru tan(ω
2 )
. (3)

where the only parameter of the classic FOV model is the field of view
order 1 coefficient. More parameters can be added to make it more
complete.

In the polynomial model the distortion is modeled as a polynomial
in x̄u and ȳu. For example, the third order (bicubic) polynomial model
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is

x̄d = a1x̄
3
u + a2x̄

2
uȳu + a3x̄uȳ

2
u + a4ȳ

3
u + a5x̄

2
u

+a6x̄uȳu + a7ȳ
2
u + a8x̄u + a9ȳu + a10

ȳd = b1x̄
3
u + b2x̄

2
uȳu + b3x̄uȳ

2
u + b4ȳ

3
u + b5x̄

2
u

+b6x̄uȳu + b7ȳ
2
u + b8x̄u + b9ȳu + b10 (4)

The rational function model is a quotient of two polynomials. A second
order rational function model can be written as

x̄d =
a1x̄

2
u + a2x̄uȳu + · · ·+ a5ȳu + a6

c1x̄2
u + c2x̄uȳu + · · ·+ c5ȳu + c6

ȳd =
b1x̄

2
u + b2x̄uȳu + · · ·+ b5ȳu + b6

c1x̄2
u + c2x̄uȳu + · · ·+ c5ȳu + c6

(5)

All of the above models, including the radial model, the division
model and the FOV model which are radial symmetric, have the fol-
lowing decomposition in the x and y direction:

x̄d = fx(x̄u, ȳu)
ȳd = fy(x̄u, ȳu). (6)

The form of fx and fy depends on the specific model.

3 Self-consistency and Universality

In the literature it is not always clear whether the above models are
correction models or distortion models. We called self-consistent a
model that can correct itself, and universal a model that can cor-
rect all others. Both qualities are theoretical properties of the model
families. Thus, they can be genuinely evaluated by realistic synthetic
experiments. Self-consistency and universality will be tested by gener-
ating a distortion with any of the above models, and then evaluating
the error incurred when correcting the generated distortion with any
of the above models.

3.1 Experiments with known distortion center

We shall first assume that the distortion center (xc, yc) is known. To
test the self-consistency of a certain model, its direct model in Eq. (6)
was used to generate a distortion with realistic coefficients (see Ta-
ble 1). This distortion was corrected by identifying the best parameters
in the same model,

x̄u = gx(x̄d, ȳd) (7)
ȳu = gy(x̄d, ȳd)

where the form of gx, gy depends on the model selected. In the syn-
thetic test, (x̄u, ȳu) and (x̄d, ȳd) are both known. The unknowns are
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the parameters of gx and gy. So the question is how well we can ap-
proach the ideal correction (x̄u, ȳu) by gx(x̄d, ȳd) and gy(x̄d, ȳd). We
want to compute the coefficients of gx and gy by minimizing the dif-
ference between the ideal correction and the practical correction. The
energy to be minimized can be written as

C =

Xd∫
0

Yd∫
0

(
gx(x̄d, ȳd)− x̄u

)2 (8)

+
(
gy(x̄d, ȳd)− ȳu

)2dxddyd.

The distortion center being known, the unknown parameters are the
parameters in gx and gy. In practice, the simulation is performed on M
samples (xui , yui), i = 1, · · · ,M regularly distributed on an image. The
corresponding distorted samples (xdi

, ydi
), i = 1, · · · ,M are obtained

by Eq (6). The discrete energy to be minimized is

D =
M∑
i=1

D2
i =

M∑
i=1

(
gx(x̄di

, ȳdi
)− x̄ui

)2 +

+
(
gy(x̄di , ȳdi)− ȳui

)2 (9)

For the radial and the polynomial models, this problem can be formal-
ized as a linear system by computing the derivatives of D with respect
to unknown parameters respectively, and setting them to zero:

Ak = b (10)

with A the coefficient matrix, k the unknown coefficient vector. The
optimal solution minimizing the norm ‖Ak−b‖ is k =

(
AT A

)−1
AT b.

In practice, the coefficient matrix A is ill-conditioned and can make
the solution unstable. Two normalization techniques can be applied to
make the linear system more stable.

The first strategy is to normalize the matrix A so that its entries
do not vary a lot. This normalization is performed by multiplying A
by normalization matrices T1 and T2,

Âk̂ = T2AT1

(
T−1

1 k
)

= T2b, (11)

chosen so that the entries of T2AT1 get closer to each other. Then

the solution is k = T1

(
ÂT Â

)−1

ÂT T2b.
The second strategy JM: if you mention two strategies you

have to explain which you finally chose and why (or say that
they give equivalent results). is to directly normalize x̄di

and ȳdi

so that the average value of rdi
is equal to 1. The normalization factor

is α =
PM

i=1

q
x̄2

di
+x̄2

di

M . Eq (10) can be directly solved, followed by a
denormalization of estimated parameters.

For example, for the radial model of order 4 with coefficients k′0,
k′1, k′2, k′3, k′4, the model in Eq. (7) has the form

gx(x̄d, ȳd) = x̄d(k′0 + k′1rd + k′2r
2
d + k′3r

3
d + k′4r

4
d) (12)

gy(x̄d, ȳd) = ȳd(k′0 + k′1rd + k′2r
2
d + k′3r

3
d + k4r

4
d).
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By some simple computations, the linear system in Eq. (10) can be
explicitly written as

Ak =


∑

i r
2
di

∑
i r

3
di

∑
i r

4
di

∑
i r

5
di

∑
i r

6
di∑

i r
3
di

· · ·
∑

i r
7
di

...
. . .

...∑
i r

6
di

· · ·
∑

i r
10
di



k′0
k′1
k′2
k′3
k′4

 (13)

= b =


∑

i r
2
di

(x̄ui x̄di + ȳui ȳdi)∑
i r

3
di

(x̄ui
x̄di

+ ȳui
ȳdi

)∑
i r

4
di

(x̄ui x̄di + ȳui ȳdi)∑
i r

5
di

(x̄ui
x̄di

+ ȳui
ȳdi

)∑
i r

6
di

(x̄ui
x̄di

+ ȳui
ȳdi

)

 .

The entries of A differ by a big ratio
P

i r10
diP

i r2
di

, which cause an numerical

instability of the linear system. The normalization matrices T1 and
T2 used to lessen the instability in Eq. (11) can be computed explicitly
as

T1 =


1P
i r2

di

0 0 0 0

0 1P
i r3

di

· · · 0
...

. . .
...

0 · · · 1P
i r6

di

 (14)

T2 =


1 0 0 0 0

0
P

i r2
diP

i r3
di

· · · 0
...

. . .
...

0 · · ·
P

i r2
diP

i r6
di

 .

The same procedures can be used to test the universality of models.
Only the polynomial model and the radial model (with fixed distortion
center) can be solved by a linear method. For all the other models,
a non-linear method must be used, even if (xc, yc) is known. The
minimization is performed by first doing an incremental Levenberg-
Marquardt (LM) algorithm which estimates the parameters in increas-
ing order. The algorithm starts estimating the parameters of a low
order model; its results are used to initialize the optimization of the
the model with an order incremented by 1, and the process continues
until the aimed order. The Jacobian matrix

J =


∂D1
∂k′0

∂D1
∂k′1

· · · ∂D1
∂k′N−1

∂D1
∂k′N

∂D2
∂k′0

∂D2
∂k′1

· · · ∂D2
∂k′N−1

∂D2
∂k′N

...
. . .

...
∂DM

∂k′0

∂DM

∂k′1
· · · ∂DM

∂k′N−1

∂DM

∂k′N


J made of the partial derivatives of each signed energy component
Di (i = 1, · · · ,M) with respect to each unknown parameter k′j (j =
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1, · · · , N) is computed explicitly to make the incremental LM algo-
rithm efficient. The self-consistency and universality properties of all
models are recapitulated in Table 2 and the parameters for generating
the distortion are in Table 1. M = 5104 points were regularly dis-
tributed in an image domain with size 1761 × 1174. They were first
distorted by applying one kind of distortion (indicated in the entry
row of Table 2) and then corrected by another model (indicated in the
entry column of Table 2). The distortion center was fixed at the center
(880.5, 587) of the image and was assumed to be known. Table 2 shows
the average error D̄ and the maximal error D∞:

D̄ =
√
D(k′0, k

′
1, k
′
2, · · · )/M (15)

D∞ = max
i
|Di(k′0, k

′
1, k
′
2, · · · )| (16)

after estimating the parameters k′0, k
′
1, k
′
2, · · · which minimize the en-

ergy in Eq (9).

The rational function model This model is somewhat an ex-
ception. In [10] it is solved linearly by using a “lifted process” tech-
nique. This model is in fact designed to recover the 3D point d(i, j)
on the normalized image plane represented in camera based coordinate
system from the distorted point (i, j). The point d(i, j) is on the line
passing through the undistorted point and the optic center:

d(i, j) = AX (i, j)

=

A11i
2 + A12ij + · · ·+ A15j + A16

A21i
2 + A22ij + · · ·+ A25j + A26

A31i
2 + A32ij + · · ·+ A35j + A36

 (17)

where X (i, j) = (i2, ij, j2, i, j, 1)T is the “lifted” coordinate of the dis-
torted image point (i, j) = (xd, yd); A the extended camera calibration
matrix:

A =

A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

 . (18)

If there is no distortion, A is degenerated to be the inverse of the
camera calibration matrix K−1. The half-line λd(i, j) (λ 6= 0) is the
3D back-projected ray, passing through the camera optic center and
the undistorted 2D image point. The inhomogeneous coordinate of
d(i, j) is (p, q)T defined by

p =
A11i

2 + A12ij + · · ·+ A15j + A16

A31i2 + A32ij + · · ·+ A35j + A36

q =
A21i

2 + A22ij + · · ·+ A25j + A26

A31i2 + A32ij + · · ·+ A35j + A36
(19)

which is the coordinate of the undistorted image point on the normal-
ized image plane (not on the physical CCD image plane). There is
an unknown homography between the corrected point by the rational
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function model and the undistorted point in the image plane. In prac-
tice, the undistorted point in the image plane is what we are looking
for, and is not available. To find the matrix A, a planar pattern con-
taining known feature points xi can be used. The extended calibration
matrix A is a bridge linking xi and the lift correspondence Xi:

Hxi = λiAXi

⇐⇒ xi = λiH−1AXi = λiA′Xi

⇐⇒ [xi]×A′Xi = 0 (20)

Recall that AXi is the homogeneous coordinate of the projection of
a 3D point on the normalized image plane. So here the unknown
homography H sends the points from the pattern to the normalized
image plane. A′ = H−1A will recover the point on the original pattern.
One pair of correspondence gives two equations for A′, so 9 pairs of
correspondences are sufficient to estimate A′. Note that if A rectifies
the camera into a pinhole camera, then A′ does it too, in spite of
the hidden H. This linear algorithm can be directly applied in our
synthetic test, where the known undistorted points replace the points
on the pattern.

But like many other linear algortihms in multi-view geometry, this
“lifted technique” minimizes the algebraic error, which is not directly
related to the geometric error. Sometimes a small algebraic error can
give a big geometric error. So in the simulation, the parameters of
the rational function model are still estimated by the incremental LM
algorithm by using the result of the linear “lifted technique” as an
initialization.

3.2 Experiments with unknown distortion center

In practice, the distortion center (xc, yc) is unknown. It should also
be considered as a parameter in the minimization formulation. The
minimization problem becomes non-linear for most models if (xc, yc)
is unknown. This is true for the radial model, the division model, the
FOV model and the rational model. In contrast the polynomial and
the rational function models are invariant to a translation of the dis-
tortion center. The point (xc, yc) can be fixed arbitrarily, and in the
polynomial case the minimization problem is linear while the rational
model is still non-linear. This is a decisive advantage with respect to
the other models. The self-consistency and universality results are re-
capitulated in Table 3 with the parameters for generating distortion
in Table 1. For the distortion generation, the distortion center was
fixed at the center (880.5, 587) of the image, while for the correction,
the initial distortion center was realistically taken (50, 50) pixels away
from the true position. For the radial model and the division model,
the Levenberg-Marquardt algorithm could still find the true distortion
center, and the minimized error was the same as when the distortion
center was known. Nevertheless, for the FOV model, a bad initial-
ization of the distortion center degraded the correction performance.
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model parameters

radial 2◦
k0 = 1.0, k1 = 0.25e−4, k2 = −0.5e−7

1084→ 1050

radial 4◦
k0 = 1.0, k1 = 0.25e−4, k2 = −0.5e−7, k3 = 1.0e−10, k4 = −1.5e−14

991.6→ 1050

division 2◦
d0 = 1.0, d1 = −0.25e−4, d2 = 0.5e−7

1083→ 1050

division 4◦
d0 = 1.0, d1 = −0.25e−4, d2 = 0.5e−7, d3 = −1.0e−10, d4 = 1.5e−14

988.7→ 1050

FOV 3◦
k0 = 1.0, ω = 1.0× 10−3, k2 = −2.0× 10−7, k3 = 4.0× 10−10

501.4→ 1050

polynomial 3◦ a1 = b1 = −1.0e−8, · · · , a5 = b5 = 2.0e−5, · · · ,
1050→ 1064 a8 = 0.9, a9 = 0.1, a10 = 0.0, b8 = 0.1, b9 = 0.9, b10 = 0.0

polynomial 4◦ a1 = b1 = 5.0e−12, a6 = b6 = −1.0e−8, a10 = b10 = 2.0e−5, · · · ,
1050→ 1075 a13 = 0.9, a14 = 0.1, a15 = 0.0, b13 = 0.1, b14 = 0.9, b15 = 0.0

rational 2◦ a1 = 1.0× 10−5, a2 = 2.0× 10−5, a3 = 3.0× 10−5, a4 = 0.9, a5 = 0.1, a6 = 0.0
1031→ 1104 b1 = 3.0× 10−5, b2 = 2.0× 10−5, b3 = 1.0× 10−5, b4 = 0.1, b5 = 0.9, b6 = 0.0

c1 = 1.0× 10−8, c2 = 1.0× 10−8, c3 = 1.0× 10−8, c4 = 0.0001, c5 = 0.0001, c6 = 1.0

Table 1: Models used to generate distortion, with their realistic
parameters. The values on the left and on the right of → are
the undistorted radius and the distorted radius respectively. For
the polynomial model, the coefficients are the same for x and
y component, except for the order 1 coefficients. Note that the
distortion can be barrel, pincushion or mustache.

For the polynomial model, the solution can be found linearly by fix-
ing an arbitrary distortion center. For the orational function model,
even though it is invariant to a translation of the distortion center,
incremental LM algorithm cannot ensure the correct minimization.

3.3 Comparison

The tables show that the models are self-consistent for an average pre-
cision of the order of 10−2 pixel if the order of correction is high enough
when the distortion center is known. The radial model and the division
model are consistent with each other, whether the distortion center is
known or not. The FOV model is a little less consistent with the ra-
dial model and the division model when the distortion center is known.
With an unknown distortion center, the FOV correction performance
decays. The polynomial model instead seems to be able to correct
any type of distortion, but a higher order is often necessary to correct
the radial, division or FOV distortions. This higher order is not a
problem, because of the computational efficiency of the linear method.
The rational function model should have the same performance as the
polynomial model. But due to the complexity in the non-linear min-
imization, it is often stuck by the local minima. In conclusion, the
polynomial model is the only one to be jointly self-consistent, universal
and linear among the compared models.
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R 2◦ R 4◦ D 2◦ D 4◦ F 3◦ P 3◦ P 4◦ Ra 2◦

R 2◦ 9e−2/8e−1 1e−1/4e−1 6e−2/5e−1 2e−1/5e−1 3e−2/1e−1 6e+1/2e+2 6e+1/2e+2 7e+1/2e+2

R 4◦ 2e−3/3e−2 2e−3/2e−2 8e−4/9e−3 2e−3/8e−3 8e−4/6e−3 6e+1/2e+2 6e+1/2e+2 7e+1/2e+2

D 2◦ 6e−2/6e−1 2e−1/6e−1 3e−2/3e−1 2e−1/1e+0 4e−2/2e−1 6e+1/2e+2 6e+1/2e+2 7e+1/2e+2

D 4◦ 1e−3/2e−2 1e−3/9e−3 4e−4/4e−3 1e−3/7e−3 7e−4/6e−3 6e+1/2e+2 6e+1/2e+2 7e+1/2e+2

F 3◦ 8e−2/3e−1 7e−2/8e−1 9e−2/4e−1 6e−2/7e−1 2e−2/2e−1 6e+1/2e+2 6e+1/2e+2 7e+1/2e+2

P 3◦ 6e−1/3e+0 5e−1/2e+0 5e−1/3e+0 6e−1/3e+0 2e−1/8e−1 2e−1/2e+0 7e−1/6e+0 5e−1/3e+0

P 4◦ 6e−1/3e+0 5e−1/2e+0 5e−1/3e+0 6e−1/3e+0 2e−1/8e−1 5e−2/6e−1 1e−1/2e+0 7e−2/6e−1

P 8◦ 6e−2/4e−1 2e−2/1e−1 6e−2/4e−1 2e−2/1e−1 7e−3/6e−2 7e−5/1e−3 7e−4/1e−2 4e−5/6e−4

P 15◦ 1e−2/6e−2 8e−3/5e−2 1e−2/6e−2 8e−3/5e−2 3e−4/1e−3 1e−7/7e−7 2e−7/3e−6 4e−7/4e−6

Ra2◦ 5e+0/2e+1 7e+0/3e+1 5e+0/2e+1 7e+0/3e+1 4e+1/1e+3 5e−1/3e+0 4e−1/1e+0 1e−1/8e−1

Ra6◦ 5e−2/2e−1 3e−2/2e−1 1e−1/7e−1 9e−2/7e−1 1e−1/6e−1 2e−6/3e−5 1e−4/2e−3 8e−8/9e−7

Ra10◦ 4e−2/2e−1 2e−2/1e−1 1e−1/8e−1 9e−2/7e−1 3e−2/3e−1 8e−8/1e−6 2e−7/3e−6 4e−9/5e−8

Table 2: Self-consistency and universality with known distortion
center. The average error (D̄)/maximal error (D∞) (in pixels)
is shown. The left column entries show the model and the order
used for correction. The top entry row gives the model and the
order used to generate the distortion. The five compared model
classes are R-Radial, D-Division, F-FOV, P-Polynomial, and Ra-
Rational. The parameters in Table 1 were used to generate the
distortion. The green color is used to highlight the average error
D̄ 6 10−2, the blue color for 10−2 < D̄ 6 10−1 and the red color
for D̄ > 10−1.

3.4 Realistic distortion

A real distortion can be far more complex than what the above simple
models can generate. A more realistic distortion contains a radial
symmetric term, a term for decentering distortion and a term for thin
prism distortion [28],

x̄d = x̄u

(
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2
u + · · ·

)
+
[
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(
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)
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] (
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2
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)
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2
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(
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u

)
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] (
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2
u

)
+ s2r

2
u

with p1, p2, p3 parameters for decentering distortion and s1, s2 param-
eters for thin prism distortion. They are both tangential distortions. In
Table 4, the self-consistency and universality of the models were again
tested with known distortion center after adding a tangential distortion
with p1 = 4.0e−6, p2 = −2.0e−6, p3 = 0, s1 = 3.0e−6, s2 = 1.0e−6. By
adding this non-radial component in the distortion, the radial model,
the division model and the FOV model do not reach anymore the 10−2

pixel precision. The rational function model again has the minimiza-
tion problem. The polynomial model is the only model getting a higher
precision when increasing the model order.
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R 2◦ R 4◦ D 2◦ D 4◦ F 3◦ P 3◦ P 4◦ Ra 2◦

R 2◦ 9e−2/8e−1 1e−1/4e−1 6e−2/5e−1 2e−1/5e−1 3e−2/1e−1 6e+1/2e+2 6e+1/2e+2 7e+1/2e+2

R 4◦ 2e−3/3e−2 2e−3/2e−2 8e−4/9e−3 2e−3/8e−3 8e−4/6e−3 6e+1/2e+2 6e+1/2e+2 7e+1/2e+2

D 2◦ 6e−2/6e−1 2e−1/6e−1 3e−2/3e−1 2e−1/1e+0 4e−2/2e−1 6e+1/2e+2 6e+1/2e+2 7e+1/2e+2

D 4◦ 1e−3/2e−2 1e−3/9e−3 4e−4/4e−3 1e−3/7e−3 2e+1/4e+1 6e+1/2e+2 6e+1/2e+2 7e+1/2e+2

F 3◦ 7e−1/2e+0 3e+0/2e+1 2e+0/9e+0 3e+0/2e+1 4e+1/6e+1 6e+1/2e+2 6e+1/2e+2 7e+1/2e+2

P 3◦ 6e−1/3e+0 5e−1/2e+0 5e−1/3e+0 6e−1/3e+0 2e−1/8e−1 2e−1/2e+0 7e−1/6e+0 5e−1/3e+0

P 4◦ 6e−1/3e+0 5e−1/2e+0 5e−1/3e+0 6e−1/3e+0 2e−1/8e−1 5e−2/6e−1 1e−1/2e+0 7e−2/6e−1

P 8◦ 6e−2/4e−1 2e−2/1e−1 6e−2/4e−1 2e−2/1e−1 7e−3/6e−2 7e−5/1e−3 7e−4/1e−2 4e−5/6e−4

P 15◦ 1e−2/6e−2 8e−3/5e−2 1e−2/6e−2 8e−3/5e−2 3e−4/1e−3 1e−7/7e−7 2e−7/3e−6 4e−7/4e−6

Ra2◦ 7e+1/9e+1 7e+1/1e+2 7e+1/9e+1 7e+1/1e+2 7e+1/8e+1 7e+1/7e+1 7e+1/7e+1 7e+1/7e+1

Ra6◦ 7e+1/7e+1 7e+1/7e+1 7e+1/7e+1 7e+1/7e+1 7e+1/7e+1 7e+1/7e+1 7e+1/7e+1 7e+1/7e+1

Ra10◦ 7e+1/7e+1 7e+1/7e+1 7e+1/7e+1 7e+1/7e+1 7e+1/7e+1 7e+1/7e+1 7e+1/7e+1 7e+1/7e+1

Table 3: Self-consistency and universality with unknown distor-
tion center. The initial distortion center was set (50, 50) pixels
away from its true position. The average error (D̄)/maximal er-
ror (D∞) (in pixels) is shown. The left column entries give the
model and the order used for correction. The top row entries
give the model and the order used to generate the distortion.
The five compared model classes are R-Radial, D-Division, F-
FOV, P-Polynomial, and Ra-Rational. The parameters in Ta-
ble 1 were used to generate the distortion. The green color is
used to highlight the average error D̄ 6 10−2, the blue color for
10−2 < D̄ 6 10−1 and the red color for D̄ > 10−1.
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R 2◦ R 4◦ D 2◦ D 4◦ F 3◦ P 3◦ P 4◦ Ra 2◦

R 2◦ 7e+0/3e+1 5e+0/2e+1 7e+0/3e+1 5e+0/2e+1 7e−1/2e+0 6e+1/2e+2 6e+1/2e+2 7e+1/2e+2

R 4◦ 7e+0/3e+1 5e+0/2e+1 7e+0/3e+1 5e+0/2e+1 7e−1/2e+0 6e+1/2e+2 6e+1/2e+2 7e+1/2e+2

D 2◦ 7e+0/3e+1 5e+0/2e+1 7e+0/3e+1 5e+0/1e+1 7e−1/2e+0 6e+1/2e+2 6e+1/2e+2 7e+1/2e+2

D 4◦ 7e+0/3e+1 5e+0/2e+1 7e+0/3e+1 5e+0/2e+1 7e−1/2e+0 6e+1/2e+2 6e+1/2e+2 7e+1/2e+2

F 3◦ 7e+0/3e+1 5e+0/2e+1 7e+0/3e+1 5e+0/2e+1 7e−1/2e+0 6e+1/2e+2 6e+1/2e+2 7e+1/2e+2

P 3◦ 6e−1/4e+0 5e−1/4e+0 5e−1/4e+0 6e−1/4e+0 2e−1/9e−1 3e−1/3e+0 8e−1/7e+0 3e−1/2e+0

P 4◦ 6e−1/3e+0 5e−1/2e+0 5e−1/3e+0 6e−1/3e+0 2e−1/8e−1 6e−2/7e−1 2e−1/2e+0 5e−2/4e−1

P 8◦ 6e−2/4e−1 2e−2/1e−1 6e−2/4e−1 2e−2/1e−1 7e−3/6e−2 1e−4/2e−3 1e−3/2e−2 1e−5/2e−4

P 15◦ 1e−2/6e−2 8e−3/5e−2 1e−2/6e−2 8e−3/5e−2 3e−4/2e−3 3e−7/2e−6 3e−7/6e−6 3e−7/4e−6

Ra2◦ 5e+0/2e+1 7e+0/3e+1 5e+0/2e+1 7e+0/3e+1 3e+0/1e+1 6e−1/3e+0 4e−1/1e+0 1e−1/8e−1

Ra6◦ 1e−1/9e−1 1e−1/8e−1 1e−1/9e−1 9e−2/8e−1 3e−2/3e−1 2e−6/3e−5 2e−4/2e−3 3e−7/5e−6

Ra10◦ 1e−1/9e−1 1e−1/8e−1 1e−1/8e−1 9e−2/7e−1 3e−2/2e−1 8e−8/1e−6 3e−7/5e−6 3e−9/6e−8

Table 4: Self-consistency and universality with known distor-
tion center. Compared with Tables 2 and 3, besides the dis-
tortion generated by the parameters in Table 1, an additional
tangential distortion is added. Each entry shows the average
error (D̄)/maximal error (D∞) (in pixels). The green color is
used to highlight the average error D̄ 6 10−2, the blue color for
10−2 < D̄ 6 10−1 and the red color for D̄ > 10−1. The only
blue-green to green lines are obtained for the polynomial model
with degree 8 to 15.

4 Real distortion fitting experiments

After its validation on synthetic examples, we present here real tests
to verify that the proposed high order polynomial model works for real
distortion correction. This test was inspired from the non-parametric
lens distortion estimation method in [11] but could be performed on
any distortion model obtained by blind correction. This method re-
quires a highly textured planar pattern, which is obtained by printing
a textured image and pasting it on a very flat object (a mirror was used
in the experiments). Two photos of the pattern were taken by a Canon
EOS 30D SLR camera with EFS 18 − 55mm lens. The minimal focal
length (18mm) was chosen (with fixed focus) to produce a fairly large
distortion. The distortion was estimated (up to a homography) as the
diffeomorphism mapping the original digital pattern to a photograph
of it. The algorithm is summarized in the following without going into
details.

1. Take two slightly different photographs of a textured planar pat-
tern with a camera whose settings are frozen;

2. apply the SIFT method [19] between the original digital pattern
and both photographs to find matchings;

3. eliminate outliers by a loop validation step;

4. triangulate and interpolate the remaining matchings to get a
dense reverse distortion field;
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5. refine the precision of the SIFT matchings by moving each point
in one image by applying the local homography estimated from
its neighboring matchings;

6. by applying the reverse distortion field to all images produced by
the real camera, the camera is converted into a virtual pinhole
camera.

The matchings delivered by step 5 (about 8000 matchings in our exper-
iments) in the above algorithm are “outliers”-free and precise thanks
to the loop validation and local homography. So we can directly try
all models to fit these “outliers”-free matchings. The residual fitting
error shows to what extent the models are faithful to a real camera lens
distortion. In addition, there is an arbitrary homography between the
digital pattern and its photograph. So the compatibility of the models
with a homography is also implicitly tested. We used 50% matchings
to estimate the parameters for different models and the other 50% to
evaluate the fitting error. The results are recapitulated in Table 5,
compared to the non-parametric method [11]. They show that all of
the radial symmetric models fail (including the radial, division and
FOV models) because the distortion field is not radial symmetric due
to the implicit unknown homography. In this experiment, the ratio-
nal model gives a performance similar to the polynomial model, but
rather by chance (in contrast, in the synthetic test, the incremental
LM algorithm does not find a global minimum). The fitting error of
the polynomial model becomes stable when its order attains 7, which
means that it does not suffer from numerical instability or noise fit-
ting. The precision attained with the polynomial model is about 500
times higher than with classic models! The non-parametric method
gives a slightly larger fitting error than the polynomial model because
the triangulation (step 4 in the above summarized algorithm) at the
border of image can be imprecise (see the difference at the border for
non-parametric method and the polynomial model in Fig. 4 and 3).

5 Plumb-line validation

It should be noted that the non-parametric method does not give a
ground truth. It is just a non-parametric estimation of the lens distor-
tion, and it is subject to errors. These errors are evident in that the
non-parametric model has a mean fitting error of 0.18 pixels. Thus,
we need a more objective evaluation to check the quality of the correc-
tion polynomial model. To this purpose, a physical frame with tightly
stretched cylindrical strings was built. The physical tension of the
strings guarantees a very high straightness. Once the parameters of
the models are estimated, a distortion field can be constructed and
applied for the distortion correction of images of strings taken by the
same camera with the same fixed lens configuration (see Fig. 4). The
average/max distance from the edge points (computed by the method
of [7]) of the corrected lines to the corresponding regression line was
computed. Table 6 recapitulates average/max distance for all lines in
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order
Parametric model type

Non-parametric model [11]
Radial Division FOV Polynomial Rational

3 24.66/89.84 26.98/103.30 26.72/101.74 1.48/10.65 0.19/1.86

0.18/6.21

4 24.55/89.08 26.95/103.22 25.47/94.53 1.26/8.93 0.05/0.49
5 24.30/85.74 26.94/104.32 25.48/95.17 0.21/2.09 0.05/0.33
6 24.28/85.58 25.43/94.53 25.47/94.87 0.08/0.83 0.05/0.27
7 24.29/85.45 24.37/86.58 25.17/93.22 0.04/0.35 0.04/0.24
8 24.27/85.93 24.27/85.87 25.18/93.66 0.04/0.27 0.04/0.87
9 24.28/86.07 24.28/86.14 25.15/93.63 0.04/0.25 0.04/0.39
10 24.27/86.24 24.28/86.21 24.28/86.03 0.04/0.22 0.04/0.39
11 24.26/86.64 24.26/86.62 24.27/86.52 0.04/0.22 0.04/0.39
12 24.27/86.48 24.27/86.53 24.26/86.57 0.04/0.26 0.04/0.39

Table 5: The fitting error (in pixels) of the compared models
to the matchings between a digital textured image and its pho-
tograph. The matchings obtained at step 5 in the summarized
algorithm are “outliers”-free and precise. Column 1 is the order
of the model. 50% matchings are used to estimate the parame-
ters and the shown average/maximal fitting error is computed on
the other 50% matchings by applying the estimated parameters.
The fitting error of non-parametric method in the last column
is computed in the same manner: 50% matchings are fist used
to estimate the deformation field, and the other 50% matchings
are used to compute the fitting error the estimated deformation
field.
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Figure 2: The textured pattern and two photos. Top row: the
digital textured pattern. Bottom row: two similar photos of the
pattern.

the image. The polynomial model still gives a stable performance when
the order attains 6, which means that a polynomial model of order 6
was already capable of capturing the whole distortion. The residual fit-
ting error comes from the noise of matching points. The polynomial
model has far too few parameters to fit this noise, which guarantees the
correction quality and stability. The rational model gives a compara-
ble performance at the price of much higher computational cost (more
than 200 times slower). All of the other parametric models do not give
a satisfactory result for the reason explained above (their average/max
error is in fact larger than shown because the used line segment detec-
tor [22] sometimes detects only one part of the non-corrected lines).
The non-parametric method gives a performance very close to the poly-
nomial model, which confirms again the effectiveness of the polynomial
model (see Fig. 4 for the visual inspection).

6 Conclusion

We introduced the self-consistency and universality criteria for camera
lens distortion models. Using these tools, the five most classic distor-
tion classes of models were evaluated and compared. The polynomial
and rational function model were shown to be both self-consistent and
universal, to the cost of a high degree. This high degree raises no
computational issue for the polynomial model. Indeed, after a correct
conditioning it can always be solved linearly. In contrast, the rational
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Figure 3: The distortion field estimated by different methods.
Top row: the distortion field obtained by a non-parametric
method [11] and its level lines (in red) with quantization step
20. Middle row: the distortion field constructed by the esti-
mated parameters of polynomial model of order-12 and the level
lines (in red) with quantization step of 20. Bottom row: the
distortion field constructed by the estimated parameters of ra-
tional function model of order-12 and the level lines (in red) with
quantization step of 20.
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Figure 4: Top row: distorted image of tightly stretched lines and
the corrected image by the non-parametric method. Middle row:
distorted images of tightly stretched lines and the corrected im-
age by the estimated polynomial model. Bottom row: distorted
images of tightly stretched lines and the corrected image by the
estimated rational function model.
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order
Parametric model type

Non-parametric model [11]
Radial Division FOV Polynomial Rational

3 6.86/36.96 3.77/21.13 4.06/20.70 0.74/4.36 0.11/0.77

0.09/0.44

4 6.91/33.70 3.85/21.75 5.80/33.49 0.58/2.47 0.09/0.51
5 7.61/32.86 3.78/19.09 5.83/30.72 0.15/0.51 0.09/0.50
6 7.65/33.58 5.92/29.95 5.89/29.90 0.09/0.45 0.09/0.49
7 5.53/24.94 6.39/31.21 6.30/33.42 0.09/0.51 0.09/0.49
8 7.60/32.91 7.59/33.11 5.68/25.26 0.09/0.52 0.09/0.49
9 6.69/26.71 6.78/26.95 5.83/26.64 0.09/0.52 0.09/0.51
10 5.42/21.54 6.16/26.11 7.55/33.62 0.09/0.55 0.09/0.52
11 2.33/8.85 2.38/8.65 3.11/11.30 0.09/0.52 0.09/0.52
12 1.72/5.15 1.53/4.36 1.95/6.67 0.09/0.51 0.09/0.52

Table 6: The average/max distance (in pixels) from edge points
of corrected lines to the corresponding regression line. The pa-
rameters of the models are estimated by 50% matchings coming
from step 5 in the summarized algorithm. The distorted image
in Fig. 4 is then corrected by using all models. The corrected
lines are extracted by using the algorithm in [22], which is sup-
posed to extract straight lines in images. Note that for the ra-
dial model, division model, FOV model, the correction is not
satisfying. Sometimes only one part of or even no line can be
extracted. So the error is bigger than shown. But all lines are
reliably extracted from the image corrected by the polynomial
model, rational model or the non-parametric method.
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model needs to be solved by an incremental Levenberg-Marquardt al-
gorithm initialized by a linear method (even though it is not ensured
that the complex non-linear minimization always find a global min-
imum). Furthermore, the polynomial model is translation invariant,
which makes it insensitive to a translation of the distortion center.
This model is not adapted to global camera calibration methods where
the internal and external parameters and the distortion model are es-
timated simultaneously. The distortion correction must be dealt with
as an independent and previous step to camera calibration. It might
be objected that the high number of parameters in the polynomial in-
terpolation (156 for an 11-order polynomial) could cause over-fitting
bias in the results. Yet, the number of control points (about 4000) is
far higher, about 30 times the number of polynomial coefficients. Our
experiments show that the residual errors stabilize for orders between
6 to 12, confirming that no over-fitting occurred. Our experiments
also show that high order polynomials are really needed if we wish to
obtain high precisions. And they indeed deliver accuracies hundred to
thousand times higher than those obtained with classic models.
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[14] E. Kilpelä. Compensation of systematic errors of image and model
coordinates. Photogrammetria, 37(1):15–44, 1980.

[15] Z. Kukelova and T. Pajdla. A minimal solution to the autocali-
bration of radial distortion. CVPR, page 17, 2007.

[16] K. L. Moore L. Ma, Y. Chen. Rational radial distortion mod-
els of camera lenses with analytical solution for distortion cor-
rection. International Journal Information Acquisition, 1(2):135–
147, 2004.

[17] Dhome M. Lavest J., Viala M. Do we really need accurate cali-
bration pattern to achieve a reliable camera calibration. ECCV,
1:158–174, 1998.

[18] Hongdong Li and Richard Hartley. A non-iterative method for
correcting lens distortion from nine point correspondences. Om-
niVis, 2005.

[19] David G Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2):91110, 2OO4.

[20] T. Pajdla, Z. Kukelova, and M. Bujnak. Automatic generator of
minimal problem solvers. ECCV, pages 302–315, 2008.

[21] B. Prescott and G. F. Mclean. Line-based correction of radial
lens distortion. Graphical Models and Image Processing, 59:39–
47, 1997.

[22] J.-M. Morel G. Randall R. Grompone von Gioi, J. Jakubowicz.
Lsd: A fast line segment detector with a false detection control.
IEEE Trans. on PAMI, 99, 2008.

[23] Gideon P. Stein. Lens distortion calibration using point corre-
spondences. CVPR, 602–608, 1997.

[24] J. G. Fryer T. A. Clarke. The development of camera calibration
methods and models. The Photogrammetric Record, 16:51–66,
1998.

[25] M. Thirthala and S. Pollefeys. Multi-view geometry of 1d radial
cameras and its application to omnidirectional camera calibration.
ICCV, pages 1539–1546, 2005.
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