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Abstract In this paper a second order vehicular macroscopic model is derived from
a microscopic car–following type model and it is analyzed. The source term includes
nonlocal anticipation terms. A Finite Volume Lagrange–remap scheme is proposed.
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1 Motivation and introduction

There are many ways to describe and model a vehicular traffic flow. Microscopic
models e.g. [3] describe the interaction between two successive vehicles. It is known
that car–following models may have a complex dynamics (see for example [9, 8])
and are able to reproduce all the flow regimes. In the macroscopic models, conserva-
tion laws and balance equations on mean quantities are searched. Since the pioneer
works by Lighthill, Whitham and Richards (LWR model), numerous improvements
and contributions have been proposed. In 2000, Aw and Rascle[1] derived an inter-
esting second order model that fixed the drawbacks of Payne’smodel, emphasized
by Daganzo [4]. More recently, Aw et al. [2] derived the Aw–Rascle model from
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microscopic follow–the–leader models. Illner et al. [7] were also able to retrieve
the Aw–Rascle model from a kinetic Vlasov description. For related works, see for
example [6, 5]. In this paper, a continuum traffic flow model isderived from a more
complex car–following model.

2 Car–following rule and microscopic model

Let us consider a vehicular traffic flow made ofN vehicles, indexed byi, i =1, . . . ,N.
For simplicity, we will assume that all the vehicles are identical, of lengthℓ. The car
indexed byi follows the car(i + 1). At time t, the vehiclei is located at position
xi(t) with speed ˙xi = vi . The spatial gap between the two vehiclesi and(i + 1) is
then given byxi+1(t)− xi(t)− ℓ (see Figure 1). The maximum (permitted) speed
will be denoted byvM. Let us also denote bygs(v,i ,vi+1) the safety spatial gap for
the vehiclei, depending on the vehicle speedsi and(i+1). A simple relaxation rule
for the spatial gap is

d
dt
(xi+1− xi − ℓ) =

gs(vi ,vi+1)− (xi+1− xi − ℓ)

xi+1− xi − ℓ
ai,i+1 (1)

whereai,i+1 is a local characteristic speed. The denominator forbids the collision
between the two vehicles. Then we get a target speedvtarget

i equal to

vtarget
i = vi+1+

(

1−
gs(vi ,vi+1)

xi+1− xi − ℓ

)

ai,i+1. (2)

A simple acceleration rule toward the target speed is given by the relaxation scheme

dvi

dt
=

vtarget
i − vi

λ
=

vi+1− vi

λ
+

(

1−
gs(vi ,vi+1)

xi+1− xi − ℓ

)

ai,i+1

λ
(3)

using a characteristic relaxation timeλ > 0. Let us comment three interesting cases.
If 0 < xi+1 − xi − ℓ≪ 1, then there is a strong breaking in order not to collide. If
xi+1 − xi − ℓ ≡ gs(vi ,vi+1), the vehiclei is at the right safe distance, and in that
case we have the simple car–following rule ˙vi = (vi+1 − vi)/λ . If xi+1 − xi ≫ 1,
the vehicle’s driveri should not be worried about vehicle(i + 1) because it is too
far from him. In that case, the driveri should accelerate up to the limit speedvM

Fig. 1 Microscopic descrip-
tion of the vehicular traffic



Nonlocal second order vehicular traffic flow models 3

according to the rule ˙vi = (vM −vi)/λ . This suggests us to chooseai,i+1 = vM −vi+1.
To summarize, we get the microscopic model

dvi

dt
=

vi+1− vi

λ
+

(

1−
gs(vi ,vi+1)

xi+1− xi − ℓ

)

vM − vi+1

λ
. (4)

3 Macroscopic quantities and spatial safety gap

From the microscopic quantities, one can define some macroscopic ones. The spe-
cific volumeτi+1/2(t) := xi+1(t)− xi(t) has the dimension of a length. The den-
sity ρi+1/2(t) = (τi+1/2(t))

−1 returns the local number of vehicles per unit length.
The quantityρM = ℓ−1 represents the maximum density (nose–to–tail vehicles) and
τm = ℓ is the minimum specific volume. Now in (4), we need a closure for the
safety gap functiongs. Fromgs one can define a safety specific volumeτs such that
gs = τs− ℓ= τs− τm and a safety densityρs = (τs)−1. The densityρs can be iden-
tified to the fundamental diagram of traffic flow which gives a relation between the
density and the equilibrium (safe) speed (see Figure 2). We shall here consider

gs(vi ,vi+1) = τs(
vi + vi+1

2
)− τm.

Fig. 2 Fundamental diagram of traffic flow and link with the spatial safety gap

4 Macroscopic model

In order to derive a macroscopic model, let us introduce someinterpolation func-
tionsv(x, t) andτ(x, t) such that

v(xi(t), t) = vi(t), τ(xi+1/2(t), t) = xi+1(t)− xi(t) ∀i = 1, . . . ,N.

A Taylor expansion allows us to write

vi+1(t)− vi(t) = v(xi+1(t), t)− v(xi(t), t) =

(

τ
∂v
∂x

)

(xi+1/2(t), t)+o((xi+1− xi)
2).
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From the motion equation ˙xi = vi , one can writed
dt (xi+1(t)−xi(t)) = vi+1(t)−vi(t).

Then we have

Dτ
Dt

(xi+1/2(t), t)) =
∂v
∂x

(xi+1/2(t), t)τ(xi+1/2(t), t)+o((xi+1(t)− xi(t))
2).

We omit the remaining term and consider that the expression holds almost every-
where, then we get the continuity equation

ρ
Dτ
Dt

−
∂v
∂x

= 0 ⇔
∂ρ
∂ t

+
∂
∂x

(ρv) = 0. (5)

Consider now the acceleration equation. First remark that
(

∂v
∂x

τ
)

(xi+1/2(t), t) =

(

∂v
∂x

τ
)

(xi(t), t)+
τ
2

∂
∂x

(

τ
∂v
∂x

)

(xi(t), t)+o(xi+1− xi).

One can also writevi+1(t) = v(xi+1(t), t) = v
(

xi(t)+ τ(xi+1/2(t), t), t
)

, which al-
lows us to derive the balance equation in Lagrangian form

ρ
Dv
Dt

=
1
λ

∂v
∂x

+
1

2λ
∂
∂x

(

τ
∂v
∂x

)

+

(

1−
gs(v(x+ τ/2, t))

τ − τm

)

ρ
vM − v(x+ τ, t)

λ
. (6)

i.e. in Eulerian form

∂
∂ t

(ρv)+
∂
∂x

(

ρv2−
1
λ

v

)

−
1

2λ
∂
∂x

(

τ
∂v
∂x

)

=

(

1−
gs(v(x+ τ/2, t))

τ − τm

)

ρ
vM −v(x+ τ , t)

λ
.

(7)

By multiplying formally equation (6) byv and using the continuity equation we get

∂
∂ t

(ρv2/2)+
∂
∂x

(

ρv3/2−
1
λ

v2/2

)

−
1

2λ
∂
∂x

(

τ
∂ (v2/2)

∂x

)

−

(

1−
gs(v(x+ τ/2, t))

τ − τm

)

ρv
vM − v(x+ τ, t)

λ
=−

1
2λ

τ
(

∂v
∂x

)2

. (8)

This shows thatS= ρv2/2 is an entropy for the system. It is easy to show thatS is
convex with respect to the conservative variables(ρ ,ρv) (but not strictly convex).
More generally, for anyC 2 strictly convex functionh : R+ → R

+, the function
S= ρ h(v) is a (non strictly) convex entropy for the system.

Properties Let us consider the first order homogeneous part of the system, i.e.

∂tρ + ∂x(ρv) = 0, ∂t(ρv)+ ∂x(ρv2−
1
λ

v) = 0. (9)

In primitive variables(τ,v) we get
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∂t(τ,v)T +

(

v −τ

0 (v− τ
λ )

)

∂x(τ,v)T = 0.

The system is strictly hyperbolic in the admissible spaceΩad
ε = {(ρ ,v), ρ ∈

[ε,ρM], v ∈ [0,vM]} for any ε > 0. The characteristic speeds areλ1 = v and
λ2 = v− τ/λ . It easy to check that the two characteristic fields are both linearly
degenerate (LD) so that the eigenvalues of the systemλi , i = 1,2 are the Riemann
invariants. One gets a straightforward structure of the solutions of the Riemann prob-
lem made of two contact discontinuities.

5 Finite volume scheme

For the sake of simplicity, we shall only deal with the inviscid part of the sys-
tem above. Let us consider a uniform discretization of the spatial domain (with
constant mesh steph) made of discrete points(x j) j∈Z, x j+1 = x j + h and cells
I j = (x j−1/2,x j+1/2), x j+1/2 = (x j +x j+1)/2. From timetn, the time advance is per-
formed using a time step∆ tn subject to stability constraints that will be detailed
later on. The numerical discretization here follows ideas from Billot et al. [5].

Homogeneous Part Because of the structure of the eigenwaves in (9), a Lagrange–
remap conservative FV approach is particularly well suited. Initially the discrete
solution is piecewise constant on each control volumeI j with densityρn

j , specific

volumeτn
j = (ρn

j )
−1, and speedvn

j . In the Lagrange step, the computational grid
moves according to the flow; the states into each cell evolve according to the La-
grangian equations. For an initial volumeI j = (x j−1/2,x j+1/2), the interface points
x j−1/2 are moved according to the motion equations ˙x j+1/2 = vn

j+1/2 over a time

step∆ tn: this givesxn+1,−
j = xn

j +∆ tnvn
j+1/2. The choicevn

j+1/2 = vn
j+1 is compat-

ible with the structure of the solutions of the local Riemannproblems, leading to a
stable upwind process. After a time step, the cell sizeshn+1,−

j become

hn+1,−
j = h+∆ tn(vn

j+1− vn
j

)

. (10)

The continuity equation shows that the number of vehiclesmj into each Lagrangian
cell I j is conserved , i.e.mn

j = ρn
j h= ρn+1,−

j hn+1,−
j = mn+1,−

j . Combining (10) and
mass conservation, we get the equivalent script

τn+1,−
j = τn

j +
∆ tn

h

(

vn
j+1− vn

j

)

. (11)

The CFL–like condition forbids the 1–waves to interact withthe moving interfaces:

∆ tn

h
sup
j∈Z

[

vn
j −min(0,vn

j −
τn

j

λ
)

]

≤ 1. (12)
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By defining

vn+1,−
j =

∫

In+1,−
j

ρn+1,−(x)vn+1,−(x)dx
∫

In+1,−
j

ρn+1,−(x)dx
=

∫

In+1,−
j

ρn+1,−(x)vn+1,−(x)dx

mn
j

the speed in the cellIn+1,−
j before projection, we get the following scheme

vn+1,−
j = vn

j +
∆ tn

mn
j λ
(

vn
j+1− vn

j

)

. (13)

The Lagrange phase is followed by a conservative projectiononto the initial uniform
mesh. Denoting byαn

j+1/2 = vn
j+1∆ tn/h the local Courant number related to the flow

speed, the projection of the density in the cellI j reads

ρn+1
j = αn

j−1/2 ρn+1,−
j−1 +

(

1−αn+1,−
j−1/2

)

ρn+1,−
j (14)

as soon as the time step∆ tn satisfies the additional CFL condition∆ tn
h supj∈Z vn

j ≤ 1.
Similarly, the projection of the conservative quantity(ρv) writes

(ρv)n+1
j = αn

j−1/2(ρv)n+1,−
j−1 +

(

1−αn+1,−
j−1/2

)

(ρv)n+1,−
j (15)

and givesvn+1
j . It is easy to prove that this numerical scheme fulfills a discrete

entropy inequality for the family of entropy functionsS= ρh(v).

Source Term Integration The second equation has a source term that acts as a
speed relaxation toward the maximum speedvm in the case a free flow regime. The
differential problem to solve is

dv
dt

=

(

1−
gs(v(x+ τ/2, t))

τ − τm

)

vM − v(x+ τ, t)
λ

. (16)

When spatially discretized, we have to solve the differential problem

dvj

dt
=

(

1−
gs(v(x j + τ j/2, t))

τ j − τm

)

vM − v(x j + τ j , t)

λ
, v j(0) = v0

j . (17)

The problem (17) is nonstandard because of the presence of delays, nonlocal terms
(due to the anticipation by the drivers) but also the coupling between the space
variablex and the specific volumeτ. A computational approach for (17) requires an
interpolation of the functionv, such as piecewise linear interpolation for example.
If, from the discrete point of view, one expects a local influence of the anticipation,
we have to assume thath is “large enough” to fulfill the inequality

inf
j∈Z

ρn
j ≥ h−1. (18)
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The condition (18) may appear surprising, but actually it expresses that the spatial
discretization must be compatible with the maximum space headway. As example,
consider a road section of lengthL= 200 km and a uniform mesh made ofM = 1000
points. Thenh= L/M = 0.2 km andh−1 = 5 km−1. The discretization of the source
term may be local as soon as the vehicle density does not go below 5 veh/km.

Whole Fractional Step Method A consistent second–order accurate time splitting
of the full inhomogeneous system may be achieved using the Strang fractional step
approach. Each time iteration is made of three substeps: (i)a time integration of the
source term over a time step∆ tn/2; (ii) a time advance of the homogeneous system
over a time step∆ tn, (iii) a time integration of the source term over∆ tn as in (i).

6 Numerical experiments

In this experiment we usevM = 130, a section lengthL = 200, a uniform mesh
composed of 500 points,λ = 4/3600 andρM = 260. We use periodic boundary
conditions. The safety density is chosen as

ρs(v) = min

(

1500
vM − v

vM
, ρ jam+(ρc−ρ jam)

v
vM

)

with ρc = 30 andρ jam= 130. The initial velocity field is a piecewise constant func-
tion equal to 3 on[0,L/4]∪ [3L/4,L] and equal to 129 on the interval(L/4,3L/4).
The initial density profileρ0(x) = (0.6+ 0.4 sin(20πx/L)) ρs(v) mimics some
nonequilibrium and traffic instabilities (see Figure 3 (a)). On Figure 3 (b), the dis-
crete solution at final simulation timet = 2.22 is plotted and shows a very good
behaviour of the numerical scheme with strong numerical stability, particularly
through shock waves. Figure 4 shows the discrete solution for all discrete times
in the phase space. One can observe a very good agreement withwhat is physically
expected. The computed numerical discrete fundamental diagram is compared to
those obtained with the LWR and Aw–Rascle models, respectively. For the Aw–
Rascle model∂tρ + ∂x(ρv) = 0, ∂tv+(v−ρ p′(ρ))∂xv = A

T (v
eq(ρ)− v), we used

veq(ρ) = min
(

(vM (1− ρ
1500),vM − vM

ρ−ρc
ρ jam−ρc

)

, p(ρ) = vM −veq(ρ), A= 1,T = λ .
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Mécanique, Volume 338(9) (2010), 529–537.



8 F. De Vuyst, V. Ricci and F. Salvarani

(a) 0 100 200
0

20

40

60

80

100

120

140

Section [km]

D
en

si
ty

 [
vh

/k
m

]

Density

0 100 200
0

20

40

60

80

100

120

140

Section [km]

V
eh

ic
le

 s
p

ee
d

 [
km

/h
]

Vehicle speed

(b) 0 100 200
30

35

40

45

50

55

60

Section [km]

D
en

si
ty

 [
vh

/k
m

]

Density

0 100 200
90

95

100

105

110

115

120

125

130

Section [km]

V
eh

ic
le

 s
p

ee
d

 [
km

/h
]

Vehicle speed

Fig. 3 (a) Initial condition: density (left) and speed (right). (b) Discrete solution at final time:
density (left) and speed (right).
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Fig. 5 Numerical Fundamental Diagram computed with: (a) LWR model, (b) Aw–Rascle model.
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