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Models And Lagrange-Remap Finite Volumes
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Abstract In this paper a second order vehicular macroscopic modelriset from
a microscopic car—following type model and it is analyzduke Source term includes
nonlocal anticipation terms. A Finite Volume Lagrange—a@rscheme is proposed.
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1 Motivation and introduction

There are many ways to describe and model a vehicular traffic Microscopic
models e.qg. [3] describe the interaction between two sgoagehicles. Itis known
that car—following models may have a complex dynamics (seexample [9, 8])
and are able to reproduce all the flow regimes. In the macpésowodels, conserva-
tion laws and balance equations on mean quantities arehszhrSince the pioneer
works by Lighthill, Whitham and Richards (LWR model), nuroes improvements
and contributions have been proposed. In 2000, Aw and Rfddaderived an inter-
esting second order model that fixed the drawbacks of Paymeckel, emphasized
by Daganzo [4]. More recently, Aw et al. [2] derived the Aw-sRle model from
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microscopic follow—the—leader models. lliner et al. [7]ree@lso able to retrieve
the Aw—Rascle model from a kinetic Vlasov description. Fdatred works, see for
example [6, 5]. In this paper, a continuum traffic flow modalésived from a more
complex car—following model.

2 Car—following rule and microscopic model

Let us consider a vehicular traffic flow madeh¥ehicles, indexed biyi =1,...,N.

For simplicity, we will assume that all the vehicles are itiead, of length?. The car
indexed byi follows the car(i + 1). At time t, the vehiclei is located at position
xi(t) with speedx; = vi. The spatial gap between the two vehidlend (i + 1) is
then given byx1(t) — xi(t) — ¢ (see Figure 1). The maximum (permitted) speed
will be denoted by . Let us also denote by®(v,i,Vvi;1) the safety spatial gap for
the vehicle, depending on the vehicle speédsd(i + 1). A simple relaxation rule
for the spatial gap is

9°(Vi,Vit1) — (X1 —X —0)

d
a(NH*Xﬁﬁ)f P ajji+1 1)

wherea; ;.1 is a local characteristic speed. The denominator forbidsctilision
between the two vehicles. Then we get a target spE&' equal to

S(\: v/
Jarget _ 1 9°(Vi,Vis1) o 2
i Viy1+ 7Xi+1fxi y Qjj+1 (2

A simple acceleration rule toward the target speed is giyaghérelaxation scheme

dvi _ vTovi via—v () @V Vie) ) @i @)
dt A A Xip1—X—0) A

using a characteristic relaxation time> 0. Let us comment three interesting cases.
If 0 < x11—X% — ¢ <1, then there is a strong breaking in order not to collide. If
Xir1— X — £ = ¢3(vi,Vviy1), the vehiclei is at the right safe distance, and in that
case we have the simple car—following rve= (Viy1 —Vi)/A. If X1 —% > 1,
the vehicle’s driveii should not be worried about vehicle+ 1) because it is too
far from him. In that case, the drivérshould accelerate up to the limit speag

$i+1(t) — Iz‘(t) —f

{
—
Fig. 1 Microscopic descrip- L v, |
tion of the vehicular traffic z;(t) zip1(t)
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according to the rulg; = (vm — Vi) /A . This suggests us to choa&g 1 = Vi — Vit 1.
To summarize, we get the microscopic model

dvi Vi1 -V O%(Vi,Vit1) | VM — Vit1
it a Y ex—i) T “)

3 Macroscopic quantities and spatial safety gap

From the microscopic quantities, one can define some mampa@sones. The spe-
cific volume 7,1 /5(t) := xi11(t) — xi(t) has the dimension of a length. The den-
sity pi1/2(t) = (Ti+l/2(t))_l returns the local number of vehicles per unit length.
The quantityoy = ¢~ represents the maximum density (nose—to—tail vehicles) an
Tm = £ is the minimum specific volume. Now in (4), we need a closuretli@
safety gap functiog®. Fromg® one can define a safety specific volumfesuch that
g®= 15— ( = 15— 1, and a safety density® = (15)~L. The density® can be iden-
tified to the fundamental diagram of traffic flow which givestation between the
density and the equilibrium (safe) speed (see Figure 2).nak lsere consider

Vi + Vi1

g*(M, Vi) = T(———) — Tm-
v A’ 73 (v)
Unr P Pgam Ko T ﬁ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Pec Tjam
Tm
0  Pe Piam P 0 v v 0 UM v

Fig. 2 Fundamental diagram of traffic flow and link with the spatefiety gap

4 Macroscopic model

In order to derive a macroscopic model, let us introduce sione@epolation func-
tionsv(x,t) andt(x,t) such that

V(X (t),t) = Vi(t), T(Xiy1/2(t),t) =Xia(t) = (t) Vi=1,....N.
A Taylor expansion allows us to write

W) <) V0200 VO (0.0 = (T30 ) Koy 010)-+ o ki3 X)),
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From the motion equation = v;, one can writeé’—t (Xi+1(t) =% (1)) = Vipa(t) — vi(t).
Then we have

O 0120 0) = 2208 200),0) T08200),8) +0(051(0) 5 (1)),

We omit the remaining term and consider that the expressitufstalmost every-
where, then we get the continuity equation

Dt odv Jdp 0 B
pD—t—a—XfO & EJra—X(pv)fO. (5)

Consider now the acceleration equation. First remark that

(g_‘): T) (X1/2(t),1) = (g—‘): r) (% (t),t) + %{% <T Z—X) (% (£),8) + 0(%i 41— %)

One can also writi1(t) = V(Xi41(t),t) = V(X (t) + T(X11/2(t),1),t), which al-
lows us to derive the balance equation in Lagrangian form

Dv 1o0v 1 9 ([ _dv oS (v(x+1/2,t))\ vm—V(X+T,t)
EX&+§&<T0_><>+<1 —m )P - ©®

i.e. in Eulerian form

17 7 1 190 ovy g(V(x+T1/2,1)) VM — V(X+T,t)
a(”v”a*x@**xv)*ﬁa*x(f?x)—<1* . )P A

(7
By multiplying formally equation (6) by and using the continuity equation we get

9 9 1 10 ([ 0(?%/2)
E(pv2/2)+5((pv3/2—xvz/2)—ﬁ&(r — )

- (1_ oS(V(x+ T/2,t))) L —vE\x+ A %T (dv)zl @

T—1n - ox
This shows thaS= pv?/2 is an entropy for the system. It is easy to show Bt
convex with respect to the conservative varialflesov) (but not strictly convex).

More generally, for anys? strictly convex functiorh : RT — R*, the function
S=ph(v) is a (non strictly) convex entropy for the system.

Properties Let us consider the first order homogeneous part of the sysem

0. 9)

AP+ 3PV =0, A(pY) +3(p¥ — T V)

In primitive variableqt,v) we get
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The system is strictly hyperbolic in the admissible sp&& = {(p,v), p €
[,pm], V € [O,um]} for any € > 0. The characteristic speeds ate = v and
A2 =v—T/A. It easy to check that the two characteristic fields are biotmatly
degenerate (LD) so that the eigenvalues of the systein= 1,2 are the Riemann
invariants. One gets a straightforward structure of thetsmis of the Riemann prob-
lem made of two contact discontinuities.

) (T,v)T =0.

5 Finite volume scheme

For the sake of simplicity, we shall only deal with the invikpart of the sys-
tem above. Let us consider a uniform discretization of thatigbdomain (with
constant mesh step) made of discrete point&;)jcz, Xj+1 = Xj +h and cells

lj = (Xj—1/2,Xj41/2)s Xj+1/2 = (Xj +Xj+1)/2. From timet", the time advance is per-
formed using a time stet" subject to stability constraints that will be detailed
later on. The numerical discretization here follows ideag1Billot et al. [5].

Homogeneous Part Because of the structure of the eigenwaves in (9), a Lagrange
remap conservative FV approach is particularly well suitedially the discrete
solution is piecewise constant on each control volumeith densitypj', specific
volume 1} = (p}‘)*l, and speed”. In the Lagrange step, the computational grid
moves according to the flow; the states into each cell evaleeraing to the La-
grangian equations. For an initial volurhe= (X;_1/2,Xj;1/2), the interface points
Xj_1/2 are moved according to the motion equations; », = V?+1/2 over a time

i . . 1,— . .
_stepAF”. this g|vesx?+ =X +At_”v?+l/2. The chou_:el?ﬂ/2 =V, is cqmpat-
ible with the structure of the solutions of the local Riemgmablems, leading to a
stable upwind process. After a time step, the cell siﬁéé” become

" =htat" (V- ). (10)

The continuity equation shows that the number of vehiolesito each Lagrangian
celll} is conserved , i.an) = plh = p"**~ ™~ = m'**~. Combining (10) and
mass conservation, we get the equivalent script

At"
n+l— _ -n
T; =T+ 'y (

J Vi =), (112)
The CFL-like condition forbids the 1-waves to interact vilte moving interfaces:

J J

Ath ] L
At sup |V — min(0,v] — Tj

h jeZ ] ) Sl (12)
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By defining
S f|jn+l,f P (x) v (x) dx fljmrl.— p™ L= (v (x) dx
J B fl."H" p”*lﬁf (X) dx -
i

3

the speed in the cell]‘*l"’ before projection, we get the following scheme

At"

+1,—
Vi _v”+mn/\(

V- vT) ) (13)
The Lagrange phase is followed by a conservative projectiwa the initial uniform
mesh. Denoting b;z(J+1 » =V}, 1At"/hthe local Courant number related to the flow
speed, the projection of the density in the ¢elleads

1- 1 1-
‘OJnJrl aj- 1/2p1n+1 +(1 O’erl/z) PJn+ (14)

as soon as the time stép" satisfies the additional CFL conditiéﬁﬂ supgez Vi <1
Similarly, the projection of the conservative quantipyv) writes

PV} = a1 (VT + (1= a5 ) ()] (15)
and givesv?“. It is easy to prove that this numerical scheme fulfills a idite

entropy inequality for the family of entropy functios= ph(v).

Source Term Integration The second equation has a source term that acts as a
speed relaxation toward the maximum spegdhn the case a free flow regime. The
differential problem to solve is

S —
dv _ 1.9 (V(X+T1/2,1))\ vm — V(X+ T,t). (16)
dt T—Tm A
When spatially discretized, we have to solve the diffeggpiioblem
dyj g3(V(Xj +Tj/2,1)) \ vm —V(Xj +Tj,1) e
a}(L. e L v = an)

The problem (17) is nonstandard because of the presencéagtdaonlocal terms
(due to the anticipation by the drivers) but also the couplietween the space
variablex and the specific volume. A computational approach for (17) requires an
interpolation of the functiow, such as piecewise linear interpolation for example.
If, from the discrete point of view, one expects a local infloe of the anticipation,
we have to assume thiais “large enough” to fulfill the inequality

> l
J|r€1£ pJ h™ (18)
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The condition (18) may appear surprising, but actually firesses that the spatial
discretization must be compatible with the maximum spaeelivay. As example,
consider a road section of lendth= 200 km and a uniform mesh madeNf= 1000
points. Therh = L/M = 0.2 km anch~! = 5 km™L. The discretization of the source
term may be local as soon as the vehicle density does not ga seleh/km.

Whole Fractional Step Method A consistent second—order accurate time splitting
of the full inhomogeneous system may be achieved using tlaa&fractional step
approach. Each time iteration is made of three substestif)e integration of the
source term over a time stéfi"/2; (ii) a time advance of the homogeneous system
over a time stegt", (iii) a time integration of the source term ow&t” as in (i).

6 Numerical experiments

In this experiment we use, = 130, a section length = 200, a uniform mesh
composed of 500 pointgy = 4/3600 andpoy = 260. We use periodic boundary
conditions. The safety density is chosen as

p5(v) = min (1500VM V; Pjam~+ (Pc — Pjam)l)
VM VM

with pc = 30 andpjam = 130. The initial velocity field is a piecewise constant func-
tion equal to 3 orf0,L/4] U [3L/4,L] and equal to 129 on the intervdl/4,3L/4).
The initial density profilep®(x) = (0.6 + 0.4 sin(207x/L)) pS(v) mimics some
nonequilibrium and traffic instabilities (see Figure 3 (&h Figure 3 (b), the dis-
crete solution at final simulation time= 2.22 is plotted and shows a very good
behaviour of the numerical scheme with strong numericadliliig particularly
through shock waves. Figure 4 shows the discrete solutiomlfaliscrete times
in the phase space. One can observe a very good agreememthaitis physically
expected. The computed numerical discrete fundamentgtatiais compared to
those obtained with the LWR and Aw—Rascle models, respdygtiFor the Aw—
Rascle modebp + dy(pv) = 0, v+ (V—pp'(p))dv = £(V*9(p) — V), we used

V¥4(p) = min ((VM (1~ 7500)> VM — VM pﬁ;fjjc), p(p) =vm—V*9p),A=1,T =A.
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Fig. 3 (a) Initial condition: density (left) and speed (right).) (Biscrete solution at final time:
density (left) and speed (right).

6000

5000

a
3
8
38

3000

Flow rate [vh/h]

Vehicle speed [kmh]
N
8
8
8

Vehicle speed [km/h]

1000

50 10 150 (] 50 100 0 2000 4000 6000 8000
Density [vh/km] Density [vh/km] Flow rate [vh/hl

Fig. 4 Discrete solution in the phase space. From left to rightv), (p, pv) and(pv,v) diagram.

140
6000
120
z 5000 =
H = £ 100
H 5 H
= £ 4000 =
< = < 80
3 3
3 £ 3000 2
I g & 6ol
K 3 2 60
] 2 ]
£ I 2000 £ 40
B E
1000 20t
0 0
0 50 100 150 0 50 100 0 2000 4000 6000
(a) Density vh/kml Density vh/kml Flow rate vh/hl
140
6000
120
z 5000 =
£ 100 = £
= £ =
= Z 4000 =
3 80 2 =
H 3
& £ 3000 2
% 0. s b3
o % 3 o
] 2 ]
£ 40 I 2000 H
B E
20- 1000
0 * [
0 50 100 150 0 50 100 0 2000 4000 6000 8000
(b) Density vh/kml Density vh/kml Flow rate vh/hl

Ei

g. 5 Numerical Fundamental Diagram computed with: (a) LWR mo(gl Aw—Rascle model.
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