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Abstract: We show the dynamical four-wave mixing in a nonlocal 
medium is described by the complex Ginzburg-Landau equation. 
Two regimes are considered for this FWM: (i) the self-oscillations 
and (ii) stationary localized states in the form of sech-function for 
the intensity pattern in the medium volume. The applications of 
such FWM in all-optical switching and optical phase conjugation 
are examined. 
 

I. INTRODUCTION 
 
The property of spatial localization of the grating amplitude 

profile formed during dynamical four-wave mixing (FWM) in 
photorefractive media with nonlocal response (Fig.1) has been 
noted in several papers [1-4]. The damped sine-Gordon 
equation was obtained to describe the dynamics of the FWM in 
a nonlocal medium [4-6]. A regime of self-oscillations was 
found and investigated theoretically for such scheme [6, 7]. 
The first experimental observation of the spatial localization of 
the grating amplitude was provided in [7]. 

In the present paper we show that the damped sine-Gordon 
equation can be transformed to the cubic complex Ginzburg-
Landau equation, which describes the properties of the 
dynamical FWM. We investigate the conditions required to get 
the self-oscillation regime. Also we investigate the properties 
of spatial localized states both for the intensity pattern and for 
the grating amplitude distribution that are described by a sech-
function along the medium volume (the axis z). We show that 
the stationary distribution is controlled by the input intensity 
ratio. This fact gives methods to optimized different 
applications of the FWM. We consider here all-optical 
switching scheme and optical phase conjugation. 

 
II. COMPLEX GINZBURG-LANDAU EQUATION DISCRIBED 

DYNAMICAL FWM IN NONLOCAL MEDIA 
 

     Transmission dynamical FWM is described by the set of 
four coupled-wave equations [7, 8] 
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and one evolution equation for the grating amplitude 
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where the intensity pattern is 4321 AAAAIm += . Here 

4,3,2,1),,( =jztAj  are the slow variable amplitudes of the 
interacted waves normalized to the total intensity 
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amplitude of the dynamical grating; τ  is the time relaxation 
constant of the grating; γ  is the photorefractive gain 
normalized to the time constant τ . In a nonlocal medium γ  is 
a complex value. 
       We consider here a particular case of a pure nonlocal 
response when Niγγ =  is the pure imaginary. Then the 
system (1)-(2) is reduced to the damped sine-Gordon equation 
[4-8]: 
                 0)2sin(/ =+−∂+∂∂ ατ uKuu zzt              (3) 

Fig. 1. The conventional scheme of the degenerate FWM in 
the transmission geometry. Straight lines are the maximums 
of the interference pattern, dash lines are the maximums of 
the grating amplitude. C is the polar axis. I10, I20, I3d, I4d are 
the input waves, I1, I2, I3, I4 are the output waves. The usual 
assumption is I4d=0. 



where uE z∂=  and the both coefficients  and K α are 
depended on t . This equation has a solution in a form of bright 
soliton [8]: 
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The damped sine-Gordon equation (3) is transformed to the 
cubic complex Ginzburg-Landau equation [8]: 
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where the gain/loss coefficient  is time depended and the 
wave-vector  is a complex constant. This way various 
solutions of the complex Ginzburg-Landau equation [9] may 
find their practical realizations during dynamical FWM in 
nonlocal media.  
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III. SELF-OSCILLATIONS IN MEDIA WITH STRONG RESPONSE 

 
     Stable oscillations (see Fig.2) are appeared in some area of 
input parameters due to influence of white noise to the phases 
of interacted waves: 

)()0( 02010 tfΛ+Φ=−=Φ ϕϕ , 100/3/~ ππ ÷Λ   (6) 

where  is a scalar,  is a white noise. The amplitude and 
the period of the oscillations depend on the input conditions: 
the value of the coupling constant and the intensity ratio. The 
reason of the oscillation behaviour is the emergence of a local 
component of the grating that causes the changes of wave 
phases during their propagation; the light contrast changes with 
time, and the grating is erased and rerecorded repeatedly. 

Λ )(tf

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The self-oscillations of the output intensity. I10/I20=3, 
I3d=0.87, I4d=0, γNd=15. 

 
 
 
 
 
 

IV. CONTROL OF OPTICAL BEAMS 
 
     In the steady state the solution for the intensity pattern and 
the grating amplitude distribution has a form of the sech-
function [4-5, 7]: 
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where  and C p  are the constants defined by the input 

conditions of a FWM scheme. The main parameter is , 
which is the integral under the grating amplitude profile over 
the medium boundaries. The value  determines the 
diffraction efficiency: 
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for the two-wave mixing: 
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The value depends on the location of the stationary sech-

function of 
du

)(zΕ  relative to the crystal boundaries 
dz ÷= 0 . To characterize FWM schemes with different 

input conditions we introduce new parameters: the position of 
the grating amplitude maximum  and the half-width of the 

grating amplitude distribution : 
0Z
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The calculations of the value  in dependence of these 
parameters for the FWM schemes with two different input 
conditions are combined in Fig.3. However only a part of the 
presented curves will correspond to any concrete scheme. This 
way one can choose optimal input conditions for different 
applications. 
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Fig. 3. The normalized value ud calculated for the FWM with 
two driven beams when their input intensity ratio is changed on 
the 3 orders of magnitude. 



      Optical switching. As it is following from the Fig.3 the 
optical switching is realized if to change  from its maximum 
value to its minimum value with the help of a guided beam. 
This situation occurs on the base of the transmission two-wave 
mixing scheme, where input beams  and  record the 

grating. But the third beam  is the guided one, which 

switch on/off the value of the  and by this way the 
diffraction efficiency (see Fig.4). 
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     Optical phase conjugation (OPC). OPC is realized when 
 over all range of changes of the input intensities. 

The optical scheme is on the base of the double phase 
conjugation mirror (DPCM) when . The 
DPCM scheme is unstable. But introducing a weak beam 

 makes the stabilization of this scheme (see Fig.5 a,b). 
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V. CONCLUSION 

 
     We show rigorously that a nonlinear system describing the 
degenerate wave mixing in a medium which possesses both a 
nonlocal response and relaxation is reduced to one nonlinear 
complex Ginzburg-Landau equation (CGLE). We develop the 
technique to obtain the cubic CGLE by using the reductive 
perturbation method for the nonlinear dynamical system 
described wave coupling of four waves. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
     The CGLE governs the spatiotemporal dynamics of the 
spatially localized interference pattern formed by the FWM.  
These properties of degenerate FWM in nonlocal media may 
find numerous applications, e.g. for optical phase conjugation, 
all-optical switching, manipulation of laser pulses, optical 
logic, transmission of solitary waves through fibers etc.  

 
REFERENCES 

 
[1] D.I. Stasel'ko, V.G. Sidorovich, “Efficiency of 

transformation of light beams by dynamic volume phase 
gratings”, J. of Technical Physics, No.3, p. 580, 1974 (in 
Russian). 

[2]   J.H. Hong, R. Saxema, “Diffraction efficiency of volume 
holograms written by coupled beams”, Opt. Lett., Vol. 16, 
p. 180, 1991. 

[3]   A.A. Zozulya, M. Saffman, D.Z. Anderson, “ Propagation 
of light beams in photorefractive media: fanning, self-
bending, and formation of self-pumped four-wave-mixing 
phase conjugation geometries”, Phys. Rev. Lett., Vol. 73, 
No. 6, p. 818, 1994. 

[4]   M. Jeganathan, M.C. Bashaw, L. Hesselink, “Evolution 
and propagation of grating envelopes during erasure in 
bulk photorefractive media”, J. Opt. Soc. Am. B, Vol. 12, 
p. 1370, 1995. 

[5]   A. Zozulya, V.T. Tikhonchuk, “Investigation of stability 
of four-wave mixing in photorefractive media”, Phys.Lett. 
A, Vol. 135, p. 447, 1989. 

[6]   A. Bledowski, W. Krolikowski, A. Kujawski, “Temporal 
instabilities in single-grating photorefractive four-wave 
mixing”, J. Opt. Soc. Am. B, Vol. 6, p. 1544, 1989. 

[7]  S. Bugaychuk, L. Kovacs, G. Mandula, K. Polgar, R. 
Rupp, “Nonuniform dynamic gratings in photorefractive 
media with nonlocal response”, Phys. Rev. E, vol. 67, p. 
046603,  2003. 

[8]  S. Bugaychuk, R. Conte, “Ginzburg-Landau equation for 
dynamical four-wave mixing in gain nonlinear media with 
relaxation”, Phys. Rev. E, Vol. 80, p. 066603, 2009. 

[9]  I.S. Aranson, L. Kramer, “The world of the complex 
Ginzburg-Landau equation”, Rev. Mod. Phys., Vol. 74, p. 
99, 2002. 

Fig. 5. The coefficient of the phase conjugation Rpc=I4(0)/I20 
in DPCM (a) and in the FWM scheme based on the DPCM 
scheme (b) - γNd=6, I10+I20+I4d=1. 

Fig. 4. All-optical switching on the base of two-wave mixing 
scheme. I10+I20+I3d=1, I4d=0, γNd=10. 
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