
Modeling and Simulation of Thick Sprays through
Coupling of a Finite Volume Euler Equation Solver and a

Particle Method for a Disperse Phase

S. BENJELLOUN1, L. DESVILLETTES2, J.M. GHIDAGLIA1 AND K.
NIELSEN3

Abstract

We present here the principles of the coupling between an efficient
numerical method for hyperbolic systems, namely the FVCF scheme (that
is, a finite volume scheme used in the context of non conservative equations
arising in multiphase flows), on the one hand; and a particle method for
the Vlasov-Boltzmann equation of PIC-DSMC type (that is, in which
macroscopic quantities are computed in each cell by adding quantities
attached to the particles, and where integrals are computed thanks to a
random sampling), on the other hand.

Numerical results illustrating this coupling are shown for a problem
involving a spray (droplets inside an underlying gas) in a pipe which is
modeled by a 1D fluid-kinetic system.

1 Introduction

Sprays are complex flows which are constituted of an underlying gas in which
a population of droplets or dust specks are dispersed, cf. [17]. There are various
possibilities for modeling such flows cf. [7]; we wish here to focus on the case
where the droplets are quite small (w.r.t to a characteristic length of the domain
which is studied) but occupy a non negligible volume fraction of this domain
(typically between 10−3 and 10−1). In such a situation (in which the spray is
sometimes called thick, cf. [17]), it is not possible to use a microscopic modeling
(in which the shape of each droplet is computed), cf. [7], and one is led to use
a statistical description of the disperse phase. It is then possible to model
the spray by Eulerian-Lagrangian systems (cf. [17], [18]) or Eulerian-Eulerian
systems (cf. [8], [13]): we focus in this work on a typical Eulerian-Lagrangian
system (described below).

Assuming (for the sake of simplicity) that the underlying gas follows the
isentropic Euler’s equations for compressible ideal flows, we now write the equa-
tions satisfied by the spray. Denoting by α := α(t, x) ≥ 0, ρ := ρ(t, x) ≥ 0,
u := u(t, x) ∈ R3, p := p(t, x) ≥ 0 the respective volume fraction, density,
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velocity and pressure of the gas at time t > 0 and point x ∈ R3, and by
f := f(t, x, v, r) ≥ 0 the density in the phase space of the droplets (at time t,
point x) of velocity v ∈ R3 and radius r > 0, we end up with the system (cf.
[4] for example):

Conservation of mass for the gas:

∂t(α ρ) + ∇x · (α ρu) = 0; (1)

Balance of momentum for the gas

∂t(αρui) + ∇x · (αρu⊗ u) + ∇xp = −
∫

v∈R3

∫

r∈R+

f F drdv + αρ g; (2)

Balance of mass and momentum for the droplets:

∂tf + v · ∇xf + ∇v ·
(

f

[

F
4
3 ρl π r3

− |g|





0
1
0





])

= Q(f); (3)

Conservation of total volume:

1 − α =

∫

v∈R3

∫

r∈R+

f
4

3
π r3 drdv; (4)

Pressure law of the gas (for some constants C0, γ > 0):

p = C0 ρ
γ . (5)

In these equations, g is the acceleration of the gravity, ρl is the density of the
droplets, and F = (F1, F2, F3) is the force received by a droplet from the gas:

F = F(ρ, r, |u− v|) (u − v) − 4

3
π r3 ∇xp, (6)

where F is a function given in a semi-empirical way (cf. [17] for example).
Finally, Q is a collision operator between droplets which reads:

Q(f)(t, x, v, r) =

∫

v∗∈R3

∫

r∗∈R+

∫ π

θ=0

∫ 2π

φ=0

(

f(t, x, v′, r) f(t, x, v∗
′

, r∗)

−f(t, x, v, r) f(t, x, v∗, r∗)

)

B(θ, |v − v∗|, r, r∗) dθdφdr∗dv∗, (7)

where ingoing and outgoing velocities are related by the formulas

v′ =
r∗3v∗ + r3v

r∗3 + r3
+

r∗3

r∗3 + r3
|v − v∗|σ,

v∗
′

=
r∗3v∗ + r3v

r∗3 + r3
− r3

r∗3 + r3
|v − v∗|σ, (8)
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and σ ∈ S2 is a unit vector parameterized by two angles θ ∈ [0, π] and φ ∈ [0, 2π].
Finally, the cross section appearing in definition (7) corresponds to hard

spheres collisions:

B := B(θ, |v − v∗|, r, r∗) = |v − v∗| (r + r∗)2
sin θ

4
. (9)

We recall in a short list the notations used in eq. (1) – (9):

t > 0 time variable
x ∈ R3 space variable
v ∈ R3 velocity of a droplet
r > 0 radius of a droplet
α := α(t, x) ∈ [0, 1] volume fraction of the gas
ρ := ρ(t, x) ≥ 0 density of the gas
u := u(t, x) ∈ R3 velocity of the gas
p := p(t, x) ≥ 0 pressure of the gas
g ∈ R3 acceleration of gravity
f := f(t, x, v, r) ≥ 0 density of droplets
F := F (t, x, v, r) ∈ R3 drag force
Q := Q(f) ∈ R collision kernel
C0, γ > 0 parameters in the pressure law
B ≥ 0 collision cross section
v∗, v

′, v′∗ ∈ R3 velocities of droplets before and after a collision
r∗ > 0 radius of a partner droplet in a collision
σ ∈ S2, θ ∈ [0, π] angular parameters in a collision

Note that the Euler equations for the gas and the Vlasov-Boltzmann equation
for the disperse phase are coupled through the drag force (6) on the one side,
and the volume fraction α on the other side: this is typical of thick sprays.

Though no rigorous mathematical theory has yet been developed for thick
sprays equations such as (1) – (9), local in time existence and uniqueness was
proven for simplified models: namely for so called thin sprays (cf. [3]) and
moderately thick sprays (cf. [16]).

A large variety of schemes exists for solving the compressible Euler equation
(or, more generally, systems of conservation laws and balance laws, cf. [9], [14]
for example). Some of them can be extended in order to include nonconservative
terms or lack of hyperbolicity which are typical of multiphase flows modeled by
Eulerian-Eulerian systems. Recently, a family of schemes called FVCF (Finite
Volume with Characteristic Flux) has shown its efficiency for such flows (cf.
[10], [11]). Our objective here is to extend the use of these FVCF schemes to
the context of (thick) sprays modeled by Eulerian-Lagrangian systems such as
(1) – (9), by coupling them to a particle method of PIC-DSMC type for the
kinetic equation (3). Here PIC (Particles In Cells) means that quantities such
as α are computed in each cell by adding quantities attached to each particle
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belonging to the corresponding cell (cf. [12] for example), and DSMC (Direct
Simulation Monte Carlo) means that the integrals in the collision kernel Q are
computed by a Monte Carlo method (cf. [5] for example).

This paper is structured as follows: In section 2, we write a 1D version
of eq. (1) – (9), in order to get a suitable model for testing the behavior of
our numerical method. Then, section 3 is devoted to the presentation of the
numerical scheme. Finally, we give in section 4 the results of a few simulations.

2 Modeling of a spray in a pipe by 1D equations

We consider a (straight horizontal) pipe of diameter D (and section πD2/4). It
is represented by eq. (1) – (9) in the domain of computation [0, L]×B(0, D/2),
where B(0, D/2) is the disc of radius D/2. The axis are chosen in such a way
that the vertical direction is along x2.

It is possible to average eq. (1) – (9) along a section of the pipe, and to
perform an empirical closure by imposing u2 = u3 = 0 and by identifying non-
linear functions of averages and averages of nonlinear functions. This procedure
is detailed in the more complex case of a curved pipe in section 4.

After these operations, we end up with the five following equations, where
t > 0, x ∈ [0, L] are the time and (1D) space variables, ρ := ρ(t, x) ≥ 0,
u := u(t, x) ∈ R, α := α(t, x) ∈ [0, 1], p := p(t, x) ≥ 0 are the density, velocity
along the axis of the pipe, volume fraction and pressure of the gas, and f :=
f(t, x, v1, v2, v3, r) ≥ 0 is the density in the phase space of droplets (note that
like in most 1D kinetic models, the function f still depends on a 3D velocity, cf.
[1] for example):

∂t(αρ) + ∂x(αρu) = 0; (10)

∂t(α ρu) + ∂x(α ρu2) + ∂xp = −
∫

v∈R3

∫

r∈R

f F1 drdv; (11)

∂tf + v1 ∂xf + ∇v ·
(

f

[

F
4
3 ρl π r3

− |g|





0
1
0





])

= Q(f); (12)

1 − α =

∫

v∈R3

∫

r∈R

f
4

3
π r3 drdv; (13)

(for some constants C0, γ > 0)

p = C0 ρ
γ ; (14)

where

F = F
(

ρ, r,

∣

∣

∣

∣

∣

∣

u− v1
−v2
−v3

∣

∣

∣

∣

∣

∣

)





u− v1
−v2
−v3



− 4

3
π r3





∂xp
0
0



 , (15)
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with F still empirically given and Q still given by (7).
Note that thanks to eq. (15) and eq. (13), it is possible to rewrite eq. (11)

as

∂t(αρu) + ∂x(α ρu2) + ∂x(α p) = p ∂xα−
∫

v∈R3

∫

r∈R+

f F





u− v1
−v2
−v3



 drdv.

(16)

This last formula is discretized in the next section (an empirical study shows
that the direct discretization of α ∂xp is slightly less stable).

We also introduce typical boundary conditions for both phases.
The boundary conditions are “entering” for the particles (this is the natural

condition for kinetic equations when one deals with a non-physical boundary).
The density of particles entering inside the tube is prescribed by two functions
ψ+ and ψ−):

f(t, 0, v, r) = ψ+(t, v, r) for v1 ≥ 0, (17)

f(t, L, v, r) = ψ−(t, v, r) for v1 ≤ 0.

For the fluid, various boundary conditions can be imposed. The numerical
computations presented in section 4 are performed in the subsonic case: the
flux of gas is prescribed on the left, and the pressure is prescribed on the right:
in other words, for some value Gin ∈ R and pout > 0, we impose

α(t, 0) ρ(t, 0)u(t, 0) = Gin; p(ρ(t, L)) = pout. (18)

Finally, the following initial data are given (for x ∈ [0, L]): the density ρ(0, x)
and the velocity u(0, x) of the gas, the density in the phase space f(0, x, v, r) of
the droplets:

ρ(0, x) ≥ 0, u(0, x) ∈ R, f(0, x, v, r) ≥ 0. (19)

3 The numerical method

We now describe how we couple the FVCF scheme and the particle (PIC-
DSMC) method in order to discretize the previous set of equations (and bound-
ary and initial conditions), that is (10), (12) – (19).

We take a time step ∆t and a space step ∆x. The cells are therefore the
intervals [m∆x, (m + 1)∆x[, for m ∈ {0, ..,M − 1} (where M is defined by
M ∆x = L).
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The function f is semi-discretized (that is, discretized in space but not in
time) as a sum of particles

f(t, x, r, v) ∼ R

N(t)
∑

k=1

δxk(t),vk(t),rk
.

The numerical weight (representativity) R of the particles is fixed and the same
for all particles.

The macroscopic quantities are semi-discretized through their values at the
center of the cells: ρ(t, (m+1/2)∆x), u(t, (m+1/2)∆x), α(t, (m+1/2)∆x) and
p(t, (m+ 1/2)∆x).

In the framework of the time discretization, we assume that the following
quantities are given at a given time n∆t: the total number N(n∆t) of particles
in the simulation; the positions, velocities and radiuses xk(n∆t), vk(n∆t), rk
of the particles, for k = 1, .., N(n∆t); the macroscopic quantities ρ(n∆t, (m+
1/2)∆x), u(n∆t, (m+1/2)∆x), α(n∆t, (m+1/2)∆x), and p(n∆t, (m+1/2)∆x)
for m ∈ {0, ..,M − 1}.

First step: (PIC method) The evolution of the quantities xk, vk is per-
formed (after time discretization) through an explicit Euler scheme (we denote
by [m∆x, (m+ 1)∆x[ the cell in which the particle k is located):

xk((n+ 1)∆t) = xk(n∆t) + ∆t vk1(n∆t),

vk((n+ 1)∆t) = vk(n∆t) + ∆t

(

F
4
3 ρl π r3k

− |g|





0
1
0





)

,

where

F = F
(

ρ(n∆t, (m+ 1/2)∆x), rk,

∣

∣

∣

∣

∣

∣

u(n∆t, (m+ 1/2)∆x) − vk1

−vk2

−vk3

∣

∣

∣

∣

∣

∣

)

×





u(n∆t, (m+ 1/2)∆x) − vk1

−vk2

−vk3





−2

3
π
r3k
∆x





(p(n∆t, (m+ 3/2)∆x) − p(n∆t, (m− 1/2)∆x)
0
0



 .

The last term in the force is slightly modified (un-centered) for the first and the
last cell of the domain.

The particles which leave the domain of computation [0, L] are eliminated,
and new particles are introduced, according to the boundary conditions. We
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obtain in this way N((n + 1)∆t). Finally, at this point, the new cell in which
each particle is living is computed, and the particles inside each cell are found.

Second step: (DSMC method)

The collisions (that is, the effect of Q(f)) are treated thanks to a standard
DSMC (Discrete Simulation Monte Carlo) method, including the acceptance-
rejection procedure sometimes known as “dummy collision procedure”, cf. [6]
and [15] for example.

Third step: The volume fraction of gas α is computed thanks to the formula

α((n + 1)∆t, (m+ 1/2)∆x) = 1 − 4 π R

3 ∆x

∑

k∈Lm((n+1) ∆t)

r3k,

where Lm((n+1)∆t) is the collection of k such that xk((n+1)∆t) ∈ [m∆x, (m+
1)∆x[.

Fourth step: (FVCF scheme) We denote by

Wn
m :=

(

Wn
m(1)

Wn
m(2)

)

:=

(

(α ρ)(n∆t, (m+ 1/2)∆x)
(αρu)(n∆t, (m+ 1/2)∆x)

)

the vector made up of the discretized conservative quantities.
We also introduce the flux of the fluid system (10), (11):

fα

(

W(1)

W(2)

)

=

(

W(2)

W 2
(2)/W(1) + αp(W(1)/α)

)

,

and its Jacobian matrix (∂fα/∂W ):

Aα,ρ,u =

(

0 1
c2 − u2 2 u

)

, (20)

where c =
√

p′(ρ) is the velocity of sound. Finally we introduce the “sign”
matrix

sgn(Aα,ρ,u) =

(

sgn(u+c)+sgn(u−c)− |u+c|−|u−c|
2c

sgn(u+c)−sgn(u−c)
2c

(c2 − u2) sgn(u+c)−sgn(u−c)
2c

|u+c|−|u−c|
2c

)

,

which is used to upwind the fluxes for the finite volume scheme.
The FVCF scheme (cf. [10], [11]), originally designed for (non necessarily

conservative) balance laws, can be adapted in the following way (here α is always
taken at time (n+ 1)∆t, and ρ, u at time n∆t).

Fourth step, first part: We begin by the convective part of the equations,
without taking into account the boundary conditions (that is, m 6= 0,M − 1).

Wn+1/2
m = Wn

m − ∆t

∆x

{

1

2

(

fα((m+1/2)∆x)(W
n
m) + fα((m+3/2)∆x)(W

n
m+1)

)
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−1

2
sgn(Aα,ρ,u((m+1/2)∆x))

(

fα((m+3/2)∆x)(W
n
m+1) − fα((m+1/2)∆x)(W

n
m)
)

−1

2

(

fα((m−1/2)∆x)(W
n
m−1) + fα((m+1/2)∆x)(W

n
m)
)

+
1

2
sgn(Aα,ρ,u((m+1/2)∆x))

(

fα((m+1/2)∆x)(W
n
m) − fα((m−1/2)∆x)(W

n
m−1)

)

}

.

We obtain at this level the quantities ρ((n+ 1/2)∆t, (m+ 1/2)∆x) and u((n+

1/2)∆t, (m+ 1/2)∆x), for m 6= 0,M − 1. The formula for W
n+1/2
m follows the

FVCF method that is Finite Volume with Characteristic Fluxes. Indeed, this
method consists in using the sign matrix in order to construct a numerical flux
as a linear combination of the left flux and the right flux at an interface. As
said, its principle consists in upwinding along the characteristic vectors of the
Jacobian matrix (20).

Fourth step, second part: The boundary conditions for the fluid are
taken into account.

We introduce the left eigenvectors of Aα,ρ,u (that is, the right eigenvectors
of tAα,ρ,u):

l1 =

(

−(u+ c)
1

)

, l2 =

(

−(u− c)
1

)

, (21)

and its right eigenvectors (normalized in such a way that tli rj = δij),

r1 = − 1

2c

(

1
u− c

)

, r2 =
1

2c

(

1
u+ c

)

. (22)

We first perform the discretization of the left boundary condition (at x = 0)
assuming that the flux αρu(0) =: Gin is given.

We write down

W
n+1/2
0 = Wn

0 − ∆t

∆x

{t

l1 (fα(3/2∆x)(W
n
1 ) − f−) r1

+tl2 (fα(1/2 ∆x)(W
n
0 ) − f−) r2

}

,

or equivalently

W
n+1/2
0 = Wn

0 − ∆t

∆x

{

1

2

(

fα(1/2∆x)(W
n
0 ) + fα(3/2∆x)(W

n
1 )
)

−1

2
sgn(Aα,ρ,u(1/2∆x))

(

fα(3/2∆x)(W
n
1 ) − fα(1/2∆x)(W

n
0 )
)

−1

2

(

f− + fα(1/2∆x)(W
n
0 )
)
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+
1

2
sgn(Aα,ρ,u(1/2∆x))

(

fα(1/2∆x)(W
n
0 ) − f−

)

}

,

where f− is sought under the form:

f− = fα(1/2∆x)(W
n
0 ) + ε1 r1 + ε2 r2,

and
tl1 f

− =t l1 fα(1/2∆x)(W
n
0 ), f−

1 = Gin.

This leads to

ε1 = 0, ε2 = 2c (Gin − f1;α(1/2∆x)(W
n
0 )).

Then, we perform the discretization of the right boundary condition (at
x = L), assuming that the pressure p(L) =: pout is given.

We write down

W
n+1/2
M−1 = Wn

M−1 −
∆t

∆x

{t

l1 (f+ − fα((M−1/2) ∆x)(W
n
M−1)) r1

+tl2 (f+ − fα((M−3/2)∆x)(W
n
M−2)) r2

}

,

or equivalently

W
n+1/2
M−1 = Wn

M−1 −
∆t

∆x

{

1

2

(

fα((M−1/2) ∆x)(W
n
M−1) + f+

)

−1

2
sgn(Aα,ρ,u((M−1/2) ∆x))

(

f+ − fα((M−1/2) ∆x)(W
n
M−1)

)

−1

2

(

fα((M−3/2) ∆x)(W
n
M−2) + fα((M−1/2) ∆x)(W

n
M−1)

)

+
1

2
sgn(Aα,ρ,u((M−1/2) ∆x))

(

fα((M−1/2)∆x)(W
n
M−1) − fα((M−3/2) ∆x)(W

n
M−2)

)

}

,

where f+ is sought under the form:

f+ = fα((M−1/2) ∆x)(W
n
M−1) + ε1 r1 + ε2 r2,

and

tl2 f
+ =t l2 fα((M−1/2) ∆x)(W

n
M−1), f+

2 = (f+
1 )2/(αp−1(pout)) + αpout.

This leads to ε2 = 0 and

f2;α((M−1/2)∆x)(W
n
M−1) − ε1

u− c

2c
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=
1

αp−1(pout)
(f1;α((M−1/2) ∆x)(W

n
M−1) −

ε1
2c

)2 + αpout.

We take the smallest root ε1 of the previous equation, that is

ε1 = 2 c2 min

(

− αp−1(pout)
u− c

2c
+
f1;α((M−1/2)∆x)(W

n
M−1)

c
+
√

∆),

−αp−1(pout)
u− c

2c
+
f1;α((M−1/2)∆x)(W

n
M−1)

c
−
√

∆)

)

,

with

∆ =

(

αp−1(pout)
u− c

2c
− f1;α((M−1/2)∆x)(W

n
M−1)

c

)2

− 1

c2

(

f1;α((M−1/2) ∆x)(W
n
M−1)

2+αp−1(pout)(−f2;α((M−1/2) ∆x)(W
n
M−1)+α pout)

)

.

Fourth step, third part: The sources (which do not appear in the mass
equation) are treated with a centered explicit scheme:

Wn+1
m(1) = W

n+1/2
m(1) ,

Wn+1
m(2) = W

n+1/2
m(2) − R∆t

∆x

∑

k∈Lm((n+1)∆t)

F

×
(

u((n+1/2)∆t, (m+1/2)∆x)−vk1((n+1)∆t)

)

+ ∆t p((n+1/2)∆t, (m+1/2)∆x)

×
(

α((n + 1)∆t, (m+ 3/2)∆x) − α((n + 1)∆t, (m− 1/2)∆x)

2 ∆x

)

.

The last term in the force is slightly modified (un-centered) for the first and the
last cell of the domain. At the end of the third part of the fourth step, we obtain
the quantities ρ((n+ 1)∆t, (m+ 1/2)∆x) and u((n+ 1)∆t, (m+ 1/2)∆x).

Fifth step: The pressure is computed thanks to the pressure law:

p((n+ 1)∆t, (m+ 1/2)∆x) = C0 [ρ((n+ 1)∆t, (m+ 1/2)∆x)]γ .

At the end of the fifth step, all the quantities xk, vk, ρ(·, (m + 1/2)∆x),
u(·, (m+ 1/2)∆x), p(·, (m+ 1/2)∆x), α(·, (m+ 1/2)∆x) are known at the time
(n+ 1)∆t, and the next time step of the numerical scheme can be performed.

In next section, we show results obtained thanks to the numerical scheme
described above. In order to present results which are relevant for typical design
cases, we consider a curved pipe rather than a straight pipe.
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Figure 1: Geometry of the pipe

4 Numerical results

We now present a typical computation for a spray in a curved pipe, thanks
to an adaptation of the scheme described in the previous section to a set of
equations taking into account the curvature. We detail this set of equations
below.

4.1 Establishment of the equations in a curved pipe

We first present the modifications to the equations (10) – (15) when one
considers a pipe (of constant diameter D) with curvature (but without torsion:
the center guide of the pipe is supposed to be contained in a vertical plane).
The geometry of the pipe is described in figure 1

In order to get the equations for such a curved pipe, we introduce a change
of variables in equations (1) – (6), defined as (x1, x2, x3) 7→ (s, h, q), with

x1 =

∫ s

0

cos(γ(σ)) dσ − h sin(γ(s)), x2 =

∫ s

0

sin(γ(σ)) dσ + h cos(γ(s)),

x3 = q,

where s is the curvilinear variable along the center guide of the pipe, h is an
orthogonal variable included in the vertical plane, and γ is the angle with the

11



horizontal axis at a given point of the centerline of the pipe. Finally, we denote
by q a variable orthogonal to the vertical plane in which the center guide of the
pipe is included.

Note that this change of variables makes sense when D
2 |γ′(s)| < 1: we

shall systematically make this assumption in the sequel. We also introduce the
velocity of the gas in the new reference frame, and its components:







us = cos(γ(s))u1 + sin(γ(s))u2,
uh = − sin(γ(s))u1 + cos(γ(s))u2,
uq = u3,

and for the droplets :

vs = cos(γ(s)) v1 + sin(γ(s)) v2, vh = − sin(γ(s)) v1 + cos(γ(s)) v2, vq = v3.

Introducing now the unknowns ρs = ρ (1− h γ′(s)), and fs = f (1− h γ′(s)),
equations (1) – (6) become

∂t(αρs) + ∂s

(

α ρs us

1 − h γ′(s)

)

+ ∂h(αρs uh) + ∂q(αρs uq) = 0; (23)

∂t(αρs us) + ∂s

(

α ρs u
2
s

1 − h γ′(s)

)

+
1

1 − h γ′(s)
∂h((1 − h γ′(s))α ρs us uh) (24)

+∂q(α ρs us uq) +
∂p

∂s
= −

∫

v∈R3

∫

r∈R+

fs Fs drdv − α ρs |g| sin(γ(s));

∂tfs + vs
∂

∂s

(

fs

1 − h γ′(s)

)

+ vh (1 − h γ′(s))
∂

∂h

(

fs

1 − h γ′(s)

)

+ vq
∂fs

∂q
(25)

+
γ′(s)

1 − h γ′(s)
vs

(

vh
∂fs

∂vs
− vs

∂fs

∂vh

)

+
∂

∂vs

(

fs

[

Fs

4
3 ρl π r3

− |g| sin(γ(s))

])

+
∂

∂vh

(

fs

[

Fh

4
3 ρl π r3

− |g| cos(γ(s))

])

+
∂

∂vq

(

fs
Fq

4
3 ρl π r3

)

=

∫

v∗∈R3

∫

r∗∈R+

∫ π

θ=0

∫ 2π

φ=0

(

fs(t, s, v
′, r) fs(t, s, v

∗′

, r∗)−fs(t, s, v, r) fs(t, s, v
∗, r∗)

)

×

B

(

θ,

∣

∣

∣

∣

∣

∣





vs − v∗s
vh − v∗h
vq − v∗q





∣

∣

∣

∣

∣

∣

, r, r∗
)

1 − h γ′(s)
dθdφdr∗dv∗;
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where v′ =





v′s
v′h
v′q



 and v∗
′

=





v∗
′

s

v∗
′

h

v∗
′

q



 are given by

v′ =

r∗3





v∗s
v∗h
v∗q



+ r3





vs

vh

vq





r∗3 + r3
+

r∗3

r∗3 + r3

∣

∣

∣

∣

∣

∣





vs − v∗s
vh − v∗h
vq − v∗q





∣

∣

∣

∣

∣

∣





σs

σh

σq



 ,

v∗
′

=

r∗3





v∗s
v∗h
v∗q



+ r3





vs

vh

vq





r∗3 + r3
− r3

r∗3 + r3

∣

∣

∣

∣

∣

∣





vs − v∗s
vh − v∗h
vq − v∗q





∣

∣

∣

∣

∣

∣





σs

σh

σq



 ,

and with the force

F =





Fs

Fh

Fq



 = F
(

ρs

(1 − h γ′(s))
, r,

∣

∣

∣

∣

∣

∣





us − vs

uh − vh

uq − vq





∣

∣

∣

∣

∣

∣

)

×





us − vs

uh − vh

uq − vq



− 4

3
π r3







1
1−h γ′(s)

∂p
∂s

∂p
∂h
∂p
∂q






.

Note that the conservation of volume and pressure law now become

1 − α =

∫

v∈R3

∫

r∈R

fs

1 − h γ′(s)

4

3
π r3 drdv, (26)

and

p = C0

(

ρs

1 − h γ′(s)

)γ

. (27)

We then take the average of the equation over sections of the pipe (that is,
part of the pipe for which s is a given number: it consists in integrating over
h and q in B(0, D/2) and dividing by |B(0, D/2)|), and we identify averages of
nonlinear functions of the unknowns with nonlinear functions of these averages.
Moreover, we impose that uh = uq = 0.

We introduce the quantity δ := δ(s) which is the average of (1 − h γ′(s))−1:

δ(s) =
4

πD2

∫

B(0,D/2)

1

1 − h γ′(s)
dhdq,

and we keep the notations ρs, us, fs, p for the averaged quantities.

Our set of equations becomes:

∂t(αρs) + ∂s(α ρs us δ) = 0; (28)
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∂t(α ρs us) + ∂s(α ρs u
2
s δ) + ∂s(α p) = −

∫

v∈R3

∫

r∈R

fs F
∗
s drdv (29)

+p ∂sα− αρs |g| sin(γ);

∂tfs + ∂s(vs δ fs) + ∂vs

([

γ′ δ vh vs +
Fs

4
3 ρl π r3

− |g| sin(γ)

]

fs

)

(30)

+∂vh

([

− γ′ δ v2
s +

Fh
4
3 ρl π r3

− |g| cos(γ)

]

fs

)

+ ∂vq

(

Fq
4
3 ρl π r3

fs

)

=

δ

∫

v∗∈R3

∫

r∗∈R+

∫ π

θ=0

∫ 2π

φ=0

(

fs(t, s, v
′, r) fs(t, s, v

∗′

, r∗)−fs(t, s, v, r) fs(t, s, v
∗, r∗)

)

×B

(

θ,

∣

∣

∣

∣

∣

∣





vs − v∗s
vh − v∗h
vq − v∗q





∣

∣

∣

∣

∣

∣

, r, r∗
)

dθdφdr∗dv∗;

with

F ∗ =





F ∗
s

F ∗
h

F ∗
q



 = F
(

ρs δ, r,

∣

∣

∣

∣

∣

∣





us − vs

−vh

−vq





∣

∣

∣

∣

∣

∣

)





us − vs

−vh

−vq



 ;

F = F ∗ − 4

3
π r3 δ





∂p
∂s
0
0



 ;

1 − α = δ

∫

v∈R3

∫

r∈R

fs
4

3
π r3 drdv; (31)

p = C0 (ρs δ)
γ . (32)

The set of equations (28) – (32) is then discretized with a variant of the scheme
presented in section 3 (when the pipe is straight, the scheme is exactly the one
which is presented in section 3).

4.2 Typical numerical experiences

We present here two typical simulations for a spray in a curved pipeline,
modeled by eq. (28) – (32), and discretized by a variant of the scheme presented
in section 3.

For each simulation, we show (at all points of the curvilinear variable s ∈
[0, L]) the time evolution of the pressure p, the volume fraction α (of gas) and

the mean velocity of the liquid defined as ul =
R

fvr3dvdr
R

fr3dvdr
(and replaced by 0

when f = 0).
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Figure 2: First test case: geometry of the pipe

4.2.1 First test case

We chose a curved pipeline with the geometry described in figure 2. The
length of the pipe is L = 20.0. All data are written in the International System
of Units (SI).

The initial datum is homogeneous in space and without droplets :

ρs = 1.0 us = 100.0 fs = 0.0.

The boundary conditions are chosen as follows :

Gin = 100.0 pout = 80000.0,

with the density of the entering droplets given by :

ψ+(t, v, r) = 2.105δv=250.01r∈[0.01,0,02].

The other constants and parameters of the model in this test are : the density
of the liquid ρl = 1100.0, the pressure law in the gas p = 100000.0ρ1.4

g , and the
(constant) drag force coefficient φlg = 0.00001.

The discretization parameters are the following: The representativity of the
droplets is R = 0.01; the time step is ∆t = 0.00006; the length step is ∆x = 0.04.

The evolution of the pressure, volume fraction (of gas), and mean velocity of
the droplets are respectively shown in figures 3, 4 and 5. The curves represent
those quantities in terms of the space (curvilinear variable s) at records: 0; 10;
30; 50; 100; 300; 500. Note that one record is performed every 20 time steps
(that is, every 1.2 10−3 units of time).
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Figure 3: First test case: pressure at different times
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Figure 4: First test case: volume fraction at different times
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Figure 5: First test case: velocity of droplets at different times
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Figure 6: Second test case: geometry of the pipe
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Figure 7: Second test case: pressure at different times

4.2.2 Second test case

The parameters of the model and discretization are the same as in the first
test case, but the pipeline has a steeper geometry described in figure 6.

The evolution of the pressure, volume fraction (of gas), and mean velocity of
the droplets are respectively shown in figures 7, 8 and 9. The curves represent
those quantities in terms of the space (curvilinear variable s) at the time: 0; 10;
30; 50; 100; 300; 500 records.

Other test cases will be presented in [2], together with extra precisions on
the computation sketched here.

4.2.3 Comments on the two test cases

We first observe that the solution to our model seems to converge towards
a steady solution, as can be seen by looking at the various curves at time steps
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Figure 8: Second test case: volume fraction at different times
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Figure 9: Second test case: velocity of droplets at different times
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Figure 10: Maximum pressure w.r.t slope of the pipe

300 and 500. The transient is particularly complex due to propagation of waves
in the pipe.

The numerical scheme seems to be stable, though the volume fraction curves
show a random noise which is typical of PIC-DSMC methods.

As could be guessed, the pressure grows at the points where the pipe makes
an angle with the horizontal line, while the volume fraction of gas and velocities
of the droplets drop (droplets accumulate there).

As the curvature of the pipe increases (second test-case with respect to first
test case), the pressure growth and the volume fraction/droplets velocity drop
also increase. In the second test case, the volume fraction of droplets reaches
values where the model is at the limit (and maybe gets out) of its validity.

4.3 A brief parametric study: Variation with respect to

the angle of curvature

We finally present a brief parametric study, taking as parameter the slope
of the pipeline.

We present the maximum pressure (in figure 10) and maximum volume frac-
tion (in figure 11) of the steady state in function of the varying parameter (slope
of the pipe) (in radians).

As can be seen, the process is far from linear. Note that when the angle is
larger than 1.4, the model is at the limit of its validity.

4.4 Conclusions

The model and numerical scheme presented here seem to be robust: not
too big oscillations are appearing in the simulations, even in computations in
which the model is at the limit of its validity (large volume fraction of droplets,
important curvature of the pipe).
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Figure 11: Maximum volume fraction w.r.t slope of the pipe

While performing the simulations, we noticed that this robustness is slightly
lessened when the model is discretized in such a way that the source term is not
p ∂xα any more: this can be understood since the pure gas case corresponds to
α = 1, where one recovers the usual flux for Euler’s equation in (16).

We also noticed that the collisions do not have an important effect on the
physical macroscopic outputs. They however provide a slightly smoothing effect
on the oscillations of the volume fraction profile.
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