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Abstract: The spacial distribution of the amplitude of the
dynamical grating has a pattern of a dark dissipative soliton in the
case of reflection two-beam coupling in a medium with nonlocal
response. The manipulation of the pattern depends on the input
intensity ratio. The effect of alteration of the shape of input pulse
by means of two-wave mixing is considered.

I. INTRODUCTION

The process of nonlinear interaction of waves is quite
efficient  to  study many phenomena, among others:
propagation of pulses with different frequency components in
optical fibers, optical parametric amplification and oscillators
in fibers, wavelength division multiplexing in fiber
communications, phase conjugation, holographic imaging, and
optical image processing. Together with the generation of new
frequency or wavelength components, amplifications and
oscillations, in the last years the wave-mixing has been found
to lead to the formation of coherent states localized either in
time or in space [1-3]. The two key ingredients for the creation
of localized states during the wave mixing are: some time delay
between the excitation intensity pattern and the response, a
nonlocal response of the medium. This temporal or spatial
delay between the intensity pattern and the refractive index
modulation leads to a phase shift between the interacting
waves, and this is precisely the process responsible for the
formation of localized states.

There exist two main geometries to operate this process of

wave interaction: the transmission geometry and the refection
geometry. The spatio-temporal pattern in the transmission
geometry resembles the bright dissipative soliton [2-3]. The
pattern possesses properties of the dark dissipative soliton in
the reflection geometry [1]. We derive the complex Ginzburg-

Landau equation to describe the spatio-temporal dynamics of

the dissipative soliton in the transmission geometry [2]. Both
the position of the dissipative soliton and its localization degree
can be altered by changing the input intensity ratio [1-3].
Output intensities are determined by a pattern recorded in the
medium. It was shown that output intensities can be
significantly changed in dependence on the input intensity ratio
[3-4] as the result of changes of the spatio-temporal pattern,
One expects many of these features to find applications in the
wave interaction process itself as well.

II. STEADY STATE DARK DISSIPATIVE SOLITON

We consider the reflection two-wave mixing (TWM) scheme
in nonlinear media with nonlocal response (Fig.1). The input
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waves /[, and /,, form the interference pattern /
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modulates the refractive index. The dynamical refractive index

grating is created in the medium volume. But the grating

maximum amplitude [ is shifted relative to the maximums of
the intensity pattern /, in the case of the nonlocal response.

The interacted waves lead to formation of the dynamical
grating at the same time they diffract on this grating. The
output intensities (]fm, [é””) are the result of the interference
between propagated and diffracted waves. In the case of the
direction of the grating shift relative to the interference pattern
pictured in the Fig.1, the intensity of the beam 1 is amplified
because the interference between propagated and diffracted
waves are constructive. Contrariwise the beam 2 is reduced
because of unconstructive interference between propagated and
diffracted waves in that direction.

The intensity value of the mterference pattern defines, the
grating amplitude [ and depends on the intensity ratio of the
interacting waves. As the mutual intensities are changed due to
energy transfer between the interacting waves, the distribution
of the intensity in the interference pattern is not uniform in the
medium volume. We will describe this distribution by the

profile 1,”(2) for the intensity pattern and by the profile E(z)
for the grating amplitude. We will show, that the grating
amplitude profile is a step-like one between maximum and
minimum  values, namely it is the tanh—function. The

position of this “step” inside the medium volume depends on
the input intensity ratio.
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Fig. 1. Two-wave mixing scheme in the reflection
geometry in a medium with nonlocal response. Straight
lines show the maximums of the interference pattern,
dashed lines show the maximums of the refractive index
grating. ¢ 1s the thickness of the medium.



The dynamical process of the self-diffraction in the

reflection geometry can be described by the following set of

equations:

0Ay 10z = —iEA, /T, 04, 10z =—iBA' /T, (1)
OB/0t=yA4A4,/1,~E/t )

where A (t,z), A,(t,z) are the amplitudes of the waves |

and 2 correspondently, “star” means the complex conjugation,
E(t,z) is the grating amplitude, /,(7,2) :’Al‘z +‘A2‘2 is
the total intensity, [, (f,z) = 4, A; is the distribution of the
intensity pattern, ¥ =y, +1y, in the amplification gain in

the nonlinearl medium, p, describes the local response, 7,

corresponds to the nonlocal response, 7 is the time relaxation
constant of the reflective index grating in the medium. The

2

= const .
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system has the first integral /, = '/11‘ ~{A3
We consider here the case of pure nonlocal response, when
the shift between the interference pattern and the dynamical
grating is equal to quarter of the grating period, i.e. ¥ =iy, .
In this case the system is significantly simplified, it becomes a
real one. The solutions of such system in the steady state are

the following:
The profiles of the intensity and the grating amplitudes:

[/77:exp(7/T.Z_p) (3)

E=yr-1,/1, =1 +tanh(yz -z — p+1In(4/ 12 )]/ 2 4)

where p is the integration constant, which can be found from

the boundary conditions.
The amplitudes of the waves:

A =Ce” +Ce

: : )
A, =Ce"” - Ce™

where the constants are:

C, = (4,7 + Aye V" J(2c0sh(U, —U,))
S (AH)@U/’ — A, e >/(2 cosh(U, -U,))

The variable U is the arca under the grating amplitude profile
U(z) = j E(z)dz 6)
0

and U, =U(z=0), U, =U(z=d), d is the thickness

of the medium.

In Fig.2 we calculate the grating amplitude profiles for
different values of the nonlinear gain. However the
amplification of the input signal depends not only on the
medium gain, but also on the intensity ratio, in the medium
with nonlocal response, like it is shown in the Fig.3. The
smaller is the input intensity of the wave | the higher is its
coefficient of the amplification. The reason of this effect is
different distributions of the amplitude of the steady state

grating (see Fig.4). The “step” of the E(z) function is located
out of the medium volume shen [, is small. Then the grating
amplitude 1s uniform distributed in the medium volume. With
increasing of /,, (to compare with [2[,) the grating amplitude

profile “is shifted” inside the medium volume. So that non
uniform distribution of the E(z) takes place in the medium.
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Fig. 2. Profile of the grating amplitude E along the
" medium volume Z for different nonlinear gains.
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Fig. 3. The gain of the wave 1 (/) for different input

intensity ratios (/,,/1,,).
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Fig. 4. Steady state grating amplitude profile for the
intensity ratio given in Fig.3. The nonlinear gain is yr =3.

7 =0...1 is the volume of the medium (/ =1).
[II. MANIPULATION OF LASER PULSES

We apply the idea to alert the grating amplitude profile to
look for effects that can take place in the case of interaction of
input pulses. We consider the dynamical system (1)-(2) for the
case of pure nonlocal response. Here we present the results of
interaction of two input pulses, which have a delay relative to
each other, in TWM in the reflection geometry. [m and /,,

are two input Gaussion beams of the equal intensity. The
halfwidth of the pulses is much higher to compare with the

=10:1). In

Fig.5. it is shown changes of the Gaussian shape of the impulse
1 on the output of the medium. The input pulses are overlapped
in the medium, so that the intensity distribution is changed as
well. Different intensities distributions will create different
profiles of the dynamical diffracted grating. As the result, the
output pulse will change its shape. The effect depends, which
input pulse is the first on the time, and which is the second one.

time relaxation constant of the grating (7,

wip "

When the first pulse is [, the output pulse is spread, has a
delay of the maximum and has one minimum (Fig. la). When

the first pulse is 7, ,, the output pulse has two minimums.
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Fig. 5. Pulse delay and changes of the pulse profile (/)
due to interaction of two input pulses Iy and /,,
(a) when the pulse 1., inputs later than the pulse L

(b) when the pulse /,, inputs carlier than the pulse 7.

[V. CONCLUSIONS

We consider the effect of formation of non uniform
distribution of the grating amplitude £(z) that takes place in
the reflection two-wave mixing in nonlocal media. The steady
state solutions arc obtained. [(z) profile resembles the

properties of the dark soliton. Its steady state location in the
medium volume depends on the input intensity ratio.

This feature to change the grating amplitude profile in
dependence of mutual intensities of interacting wave is used to
consider new effects of manipulation of laser pulses. That may
be very perspective for applications in signal information
processing, laser spectroscopy, optical fiber communication
systems.
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