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Abstract.
We consider a Micro-Electro-Mechanical Systems (MEMS) device vibrating at high frequency.

We present (theoretical and numerical) computations allowing to assess the damping of the gas
trapped in the channel of the device.

Semi-explicit solutions for the transient and permanent regimes associated to the linearized BGK
equations with Maxwellian boundary conditions and a periodic forcing are established.

Then, different numerical methods are briefly described forthe treatment of these equations.
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INTRODUCTION

Our study is motivated by the increasing use of Micro-Electro-Mechanical Systems
(MEMS) devices vibrating at high frequencies (cf. [10]) [for low frequency MEMS
devices used at small pressure, we refer e.g. to [7], [4]].

We proposed in [5] the study of resonances for the acoustic waves in the channel
of such a device when the gas is rarefied and modeled by a linearized BGK (or ES)
equation, thanks to the use of finite differences numerical computations for the transient
regime, and exact or semi-exact computations for the permanent regime. This study
enables to treat very rarefied regimes which cannot be attained using an approach based
on the Navier-Stokes equation like in [10].

In this paper, we keep the framework of [5], and present some new mathematical and
numerical developments for the considered problem. After briefly recalling in Section 1
the principles of the modeling by linearized BGK equations of the vibrating device, we
introduce in Section 2 a computation enabling to obtain a semi-explicit formula (integral
equation) for the transient problem, and we deduce from it another semi-explicit formula
for the permanent regime. The summation of the series appearing in this last formula
can be done in the case of pure specular reflexion and pure diffuse reflexion. For pure
diffuse reflexion, we recover the expression given in [5]. Finally, Section 3 is devoted to
the presentation of alternative numerical approaches to the finite difference method used
in [5], and a brief comparison of those approaches.



MODELING

Nonlinear Boltzmann equation

We consider a rarefied gas whose density in the phase spacef (t,x,v) (of molecules
which at timet and pointx = (x1,x2,x3) have velocityv = (v1,v2,v3)) is assumed to
satisfy the Boltzmann equation (cf. [3])

∂t f + v ·∇x f = Q( f ),

where the collision kernelQ is defined (for some cross sectionB) by

Q( f )(v) =
∫

v∗∈IR3

∫

σ∈S2

{

f (v′∗) f (v′)− f (v) f (v∗)

}

B

(

|v− v∗|,
v− v∗
|v− v∗|

·σ
)

dσ dv∗,

where pre- and post-collisional velocities are related by

v′ =
v+ v∗

2
+

|v− v∗|
2

σ , v′∗ =
v+ v∗

2
− |v− v∗|

2
σ , (1)

andσ belongs to the unit sphereS2. We are interested in the situation when this gas is
confined in a spatial domainΩ := Ω(t)⊂ IR3 moving with time. For a pointx ∈ ∂Ω(t),
we denote byUw(t,x) its velocity.

In such a domain, the Maxwellian boundary condition writes (cf. [3])

∀x,v ∈ (∂Ω(t)× IR3)+, f (t,x,v) = (1−α) f (t,x,v−2((v−Uw(t,x)) ·n(x))n(x))

+α
e−(v−Uw(t,x))2

π

∫

(w−Uw(t,x))·n(x)≥0
2(w−Uw(t,x)) ·n(x) f (t,x,w)dw,

where(∂Ω(t)× IR3)+ is constituted of the points(x,v) ∈ ∂Ω(t)× IR3 such that(v−
Uw(t,x)) ·n(x)< 0, wheren(x) is the outward normal unit vector at pointx ∈ ∂Ω(t), and
whereα ∈ [0,1] is the proportion of diffuse reflexions at the wall.

We now restrict ourselves to the typical geometry of a MEMS channel (cf. [10], [8]),
such as described in the following figure:
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that is, the considered rarefied gas is trapped between two walls of sizeL×M and at
distanceδ from one another, withL,M >> δ .

We assume that one of the walls is fixed, and that the other one oscillates with
a velocityUw(t) = U0

w sin(ω t), with U0
w ω−1 << δ , that is, we put ourselves in the

framework of a high-frequency oscillation.
As a consequence of these assumptions, we model the problem thanks to

a distribution function f which only depends onx1 ∈ [−δ/2,δ/2] (in fact,
x1 ∈ [−δ/2−U0

w ω−1 cos(ω t),δ/2], but this interval can be replaced by[−δ/2,δ/2]
sinceU0

w ω−1 << δ ) andv = (v1,v2,v3) ∈ IR3. Note that f does not depend onx2,x3,
that is, the walls are large enough to be assumed of infinite size. This last choice of
modeling, based on the hypothesisL,M >> δ and on the high-frequency oscillation
assumption, is discussed in [5], where 2D (in space) computations are presented to
sustain it.

The functionf satisfies then the 1D-Boltzmann equation

∂t f (t,x1,v)+ v1 ∂x1 f (t,x1,v) = Q( f )(t,x1,v),

and (at pointx1 =±δ/2) the boundary conditions:

f (t,δ/2,v) = (1−α) f (t,δ/2,−v1,v2,v3)+α
e−|v|2

π

∫

w1>0
2w1 f (t,δ/2,w)dw, (2)

for v1 < 0, and

f (t,−δ/2,v) = (1−α) f (t,−δ/2,2Uw(t)− v1,v2,v3)

+α
e−|v−Uw(t)|2

π

∫

w1<0
(−2)(w1−Uw(t)) f (t,−δ/2,w)dw, (3)

for v1 >Uw(t).

Linearization of the Boltzmann equation

We now assume that the densityf stays close to the (absolute) Maxwellian equilib-
rium, that is (in a suitable set of units in which this Maxwellian function is normalized)

f (t,x1,v) =
e−|v|2

π3/2
(1+h(t,x1,v)),

whereh << 1 (cf. [8]).
Then, the equation satisfied byh (up to terms inO(h2)) writes

∂th(t,x1,v)+ v1∂x1h(t,x1,v) =
∫

v∗∈IR3

∫

σ∈S2
B

(

|v− v∗|,
v− v∗
|v− v∗|

·σ
)

e−|v∗|2

π3/2

×
{

h(t,x1,v
′
∗)+h(t,x1,v

′)−h(t,x1,v∗)−h(t,x1,v)

}

dσdv∗,



wherev′,v′∗ are defined by (1).
We also assume that the velocityU0

w is very small (with respect to the thermal velocity
of the Maxwellian distribution, which is here of order 1, in other wordsU0

w << 1).
Neglecting therefore also(U0

w)
2 andU0

w h in front of U0
w, the boundary conditions (2),

(3) becomes

h(t,δ/2,v) = (1−α)h(t,δ/2,−v1,v2,v3)+
α
π

∫

w1>0
2w1 e−|w|2 h(t,δ/2,w)dw, (4)

for v1 < 0, and

h(t,−δ/2,v)= (1−α)h(t,−δ/2,−v1,v2,v3)+
α
π

∫

w1<0
(−2w1)e−|w|2 h(t,−δ/2,w)dw

(5)
+4(1−α)v1Uw(t)+α (

√
π +2v1)Uw(t)

for v1 > 0.

BGK model

The linearized Boltzmann equation can be approximated by the linearized BGK
equation (cf. [2]) (more precisely, a version of the linearized BGK equation in which
the thermal effects are not taken into account) under conditions which are detailed in
[5] (and which are sustained by numerical computations using the ES model). Those
conditions amount to assume that the frequency of oscillations of the wall is large
enough.

The equation can then be written (note that from now on, we replacex1 by x andv1
by v for the sake of readability):

∂th(t,x,v)+ v∂xh(t,x,v) =−h(t,x,v)+L0(t,x)+2vL1(t,x), (6)

where (for anyk ∈ IN)

Lk(t,x) = π−1/2
∫

w∈IR
e−w2

wk h(t,x,w)dw. (7)

The boundary conditions (4), (5) are now rewritten using notations which enable to write
computations in the sequel which are common to all possible values ofα:

v < 0, h(t,δ/2,v) =
∫

w>0
h(t,δ/2,w)µL

v (dw), (8)

v > 0, h(t,−δ/2,v) =
∫

w>0
h(t,−δ/2,w)µR

v (dw)+β (t,v), (9)

with

µL
v (w) = (1−α)δ−v(w)+α 2we−w2

; µR
v (w) = (1−α)δ−v(w)+α (−2w)e−w2

,

β (t,v) = β̃ (v)Uw(t), β̃(v) = (1−α) β̃1(v)+α β̃0(v),



β̃1(v) = 4v; β̃0(v) =
√

π +2v. (10)

In [5], eq. (6) – (10) is used to compute the resonances/antiresonances in the channel
of the MEMS device, that is the values ofω for which the amplitude of the oscillations
of L2(t,−δ/2) (related to the pressure on the moving wall) in the permamentregime,
are maximal/minimal.

These computations involve an analytical part (semi-explicit formulas for the perma-
nent regime of the oscillations ofL2(t,−δ/2) in the special case of diffuse boundary
conditions (α = 1)), and a numerical part (finite difference scheme).

In next section, we present a computation that holds for allα, and that enables to
give a semi-explicit solution to the transient regime as well as to the permanent regime
(seen here as an asymptotics of the transient regime). It enables to recover the analytical
results of [5], the method used here being quite different from that of [5] (where the
transient problem is not used).

SEMI-EXPLICIT SOLUTIONS

Time dependent (transient) formulas

We present here a simple computation allowing to obtain a semi-explicit formula for
the solution of eq. (6) - (10).

Recalling definition (7) and using the characteristics, we get for the solution of eq. (6)
– (10) [withh = 0 at timet = 0] the following identities (for anyk ∈ IN):

π1/2 Lk(t,x) =
∫

IR

∫ t

t0
e−(t−s) (L0+2vL1)(s,x− v(t − s))dsvke−v2

dv

+

∫

v>0
e−(t−t0)β (t0,v)vke−v2

dv

+
∞

∑
R=0

∫

IR

∫

w1>0
..

∫

w2R+1>0

∫ t2R

t2R+1

e−(t−s) (L0−2sgn(v)w2R+1L1)(s,sgn(v)(−δ/2+w2R+1(t2R−s)))

dsdµR
sgn(v)w2R

(−sgn(v)w2R+1)dµL
−sgn(v)w2R−1

(sgn(v)w2R)..dµR
v (−sgn(v)w1)vke−v2

dv

+
∞

∑
R=1

∫

IR

∫

w1>0
..
∫

w2R>0

∫ t2R−1

t2R

e−(t−s) (L0+2sgn(v)w2R L1)(s,sgn(v)(δ/2−w2R(t2R−1−s)))

dsdµL
−sgn(v)w2R−1

(sgn(v)w2R)dµR
sgn(v)w2R−2

(−sgn(v)w2R−1)..dµR
v (−sgn(v)w1)vke−v2

dv

+
∞

∑
Q=1

∫

IR

∫

w1>0
..
∫

wQ>0
e−(t−tQ)β (tQ,wQ)1sgn(v)=(−1)Q

dµR if v<0;L if v>0
−wQ−1

(wQ)dµL if v<0;R if v>0
wQ−2

(−wQ−1)..dµR
v (−sgn(v)w1)vke−v2

dv,
(11)

with

tk = sup

(

t − x
v
− δ/2

|v| −δ [
1

w1
+ ..+

1
wk

],0

)

. (12)



As can be seen, it is possible to replace the original PDE by two time-delay integral
equations for the quantitiesL0 andL1. Then all the momentsLk can be recovered once
L0 andL1 are known.

Time independent (permanent) solutions

We relate the computation of the previous section with the problem of finding the
permanent regime (as stated in [5]) by usingβ (t,v) = Im (eiω t β̃ (v)). The large time
behavior asymptotics ofLk in this case is expected to be of the form Im(λk(x)eiωt) (that
is, the permanent regime). As a consequence, we introduce the quantitylk(t,x) defined
by Lk(t,x) = Im (eiωt lk(t,x))) and assume thatλk(x) := limt→∞ lk(t,x) exists.

Then, at the formal level, we get out of the formula of the previous subsection the
following integral equation forλk:

π1/2 λk(x) =
∫

v∈IR

∫

[x,−sgn(v)δ/2]
e−( x−y

v )(1+iω)(λ0+2vλ1)(y)dy sgn(v)vk−1e−v2
dv

+
∞

∑
Q=1

∫

(−1)Q v>0

∫

w1>0
..
∫

wQ>0
e−(t−tQ)(1+iω)β̃ (wQ)

dµL if Q even,R if Q odd
−wQ−1

(wQ) ...dµR
v ((−1)Q+1w1)vke−v2

dv

+
∫

v>0
e−(t−t0)(1+iω)β̃ (v)vke−v2

dv

+
∞

∑
R=0

∫

v∈IR

∫

w1>0
..

∫

w2R+1>0

∫ δ/2

−δ/2
e
−( x

v+
δ

2|v|+
δ

w1
+..+ δ

w2R
+ δ/2+sgn(v)y

w2R+1
)(1+iω)

(λ0−2sgn(v)w2R+1λ1)(y)
dy

w2R+1
dµR

sgn(v)w2R
(−sgn(v)w2R+1) ...dµR

v (−sgn(v)w1)vke−v2
dv

+
∞

∑
R=1

∫

v∈IR

∫

w1>0
..
∫

w2R>0

∫ δ/2

−δ/2
e
−( x

v+
δ

2|v|+
δ

w1
+..+ δ

w2R−1
+

δ/2−sgn(v)y
w2R

)(1+iω)

(λ0+2sgn(v)w2R λ1)(y)
dy

w2R
dµL

−sgn(v)w2R−1
(sgn(v)w2R) ...dµR

v (−sgn(v)w1)vke−v2
dv.

This equation is quite complicated because of the presence of the series (which are
already present in the formula for the transient regime). These series are related to the
possibility for a molecule to bump successively on the left and right walls (or on the right
and left walls) several times before being involved in a collision with another molecule
of the gas.

As a consequence, usable formulas can be found only in the cases in which these series
can be explicitly computed: those cases include the pure specular reflexion (α = 0) and
the pure diffuse reflexion (α = 1) [this last case was already treated in [5]], but also an
asymptotic expansion corresponding toα close to 1.

Next subsection is devoted to the presentation of the summation processes, which are
different for the different values ofα.



Summation of the series

We first look to the case whenα = 0. Denoting byTk(ρ) =
∫ ∞

0 vk e−v2
e−ρ/v dv the

Abramowitz function and byUk(ρ ,σ) =
∫ ∞

0
vk e−v2

e−ρ/v

1−e−σ/v dv the modified Abramowitz
function, the formula obtained in the above subsection becomes, after summation of
the geometric series, for allk ∈ IN,

π1/2λk(x) =
∫ x

−δ/2
λ0(y)Tk−1([1+ iω] (x− y))dy

+

∫ x

−δ/2
2λ1(y)Tk([1+ iω] (x− y))dy+(−1)k

∫ δ/2

x
λ0(y)Tk−1([−1− iω] (x− y))dy

+(−1)k+1
∫ δ/2

x
2λ1(y)Tk([−1− iω] (x− y))dy

+

∫ δ/2

−δ/2
λ0(y) [Uk−1((1+ iω)(2δ + x− y),ν)+Uk−1((1+ iω)(δ + x+ y),ν)

+(−1)kUk−1((1+ iω)(2δ − x+ y),ν)+(−1)kUk−1((1+ iω)(δ − x− y),ν)]dy

+2
∫ δ/2

−δ/2
λ1(y) [Uk((1+ iω)(2δ + x− y),ν)−Uk((1+ iω)(δ + x+ y),ν)

+(−1)k+1Uk((1+ iω)(2δ − x+ y),ν)+(−1)kUk((1+ iω)(δ − x− y),ν)]dy

+4Uk+1((1+ iω)(x+δ/2),ν)+4(−1)kUk+1((1+ iω)(3δ/2− x),ν),
with ν = (1+ iω)(2δ ).

We see therefore thatλ0 andλ1 satisfy a system of two convolution-like equations
on [−δ/2,δ/2], and that allλk can then be recovered onceλ0 andλ1 are known. These
convolution-like equations can be solved numerically in order to compute the permanent
regime in the caseα = 0 without using a numerical scheme for the time-dependent
problem.

The case whenα = 1 can also be treated thanks to a summation of the series and leads
to the formula (68) p.16 of [5].

This formula can be extended to the case whenα is close to 1. It leads to an expansion
in powers of 1−α which is fully detailed below.

We recall that

π1/2 λk(x) =
∫

v>0

∫ x

−δ/2
e−( x−y

v )(1+iω)(λ0+2vλ1)(y)dyvk−1e−v2
dv

+
∫

v<0

∫ δ/2

x
e−( x−y

v )(1+iω)(λ0+2vλ1)(y)dy(−vk−1)e−v2
dv

+
∞

∑
Q=1,Qeven

∫

v>0

∫

w1>0
..

∫

wQ>0
e−(t−tQ)(1+iω)β̃ (wQ)



dµL
−wQ−1

(wQ)dµR
wQ−2

(−wQ−1)..dµR
v (−w1)vke−v2

dv

+
∞

∑
Q=1,Qodd

∫

v<0

∫

w1>0
..
∫

wQ>0
e−(t−tQ)(1+iω)β̃ (wQ)

dµR
−wQ−1

(wQ)dµL
wQ−2

(−wQ−1)..dµR
v (w1)vke−v2

dv

+

∫

v>0
e−(t−t0)(1+iω)[(1−α) β̃1+α β̃0](v)vke−v2

dv

+
∞

∑
R=0

∫

v>0

∫

w1>0
..
∫

w2R+1>0

∫ δ/2

−δ/2
e
−( x

v+
δ

2|v|+
δ

w1
+..+ δ

w2R
+ δ/2+y

w2R+1
)(1+iω)

(λ0−2w2R+1 λ1)(y)dy
dy

w2R+1
dµR

w2R
(−w2R+1)dµL

−w2R−1
(w2R)..dµR

v (−w1)vke−v2
dv

+
∞

∑
R=1

∫

v>0

∫

w1>0
..

∫

w2R>0

∫ δ/2

−δ/2
e
−( x

v+
δ

2|v|+
δ

w1
+..+ δ

w2R−1
+ δ/2−y

w2R
)(1+iω)

(λ0+2w2R λ1)(y)dy
dy

w2R
dµL

−w2R−1
(w2R)dµR

w2R−2
(−w2R−1)..dµR

v (−w1)vke−v2
dv

+
∞

∑
R=0

∫

v<0

∫

w1>0
..
∫

w2R+1>0

∫ δ/2

−δ/2
e
−( x

v+
δ

2|v|+
δ

w1
+..+ δ

w2R
+ δ/2−y

w2R+1
)(1+iω)

(λ0+2w2R+1 λ1)(y)dy
dy

w2R+1
dµR

−w2R
(w2R+1)dµL

w2R−1
(−w2R)..dµR

v (w1)vke−v2
dv

+
∞

∑
R=1

∫

v<0

∫

w1>0
..

∫

w2R>0

∫ δ/2

−δ/2
e
−( x

v+
δ

2|v|+
δ

w1
+..+ δ

w2R−1
+ δ/2+y

w2R
)(1+iω)

(λ0−2w2R λ1)(y)dy
dy

w2R
dµL

w2R−1
(−w2R)dµR

−w2R−2
(w2R−1)..dµR

v (w1)vke−v2
dv

:= a+b+ c+d + e+ f1+ f2+ f3+ f4.

We now detail all the formulas corresponding to those terms:

a =

∫ x

−δ/2
[λ0(y)Tk−1((1+ iω)(x− y))+2λ1(y)Tk((1+ iω)(x− y))]dy,

b = (−1)k
∫ δ/2

x
[λ0(y)Tk−1((−1− iω)(x− y))−2λ1(y)Tk((−1− iω)(x− y))]dy,

e=4(1−α)Tk+1((x+δ/2)(1+iω))+α [
√

π Tk((x+δ/2)(1+iω))+2Tk+1((x+δ/2)(1+iω))],

f1 = O((1−α)2)+
∞

∑
R=0

α2R+1Tk((x+δ/2)(1+ iω)) [2T1(δ (1+ iω))]2R

×
∫ δ/2

−δ/2
[2λ0(y)T0((y+δ/2)(1+ iω))−4λ1(y)T1((y+δ/2)(1+ iω))]dy



+
∞

∑
R=1

(2R−1)α2R (1−α)Tk((x+δ/2)(1+iω)) [2T1(2δ (1+iω))] [2T1(δ (1+iω))]2R−2

×
∫ δ/2

−δ/2
[2λ0(y)T0((y+δ/2)(1+ iω))−4λ1(y)T1((y+δ/2)(1+ iω))]dy

+
∞

∑
R=1

α2R (1−α)Tk((x+δ/2)(1+ iω)) [2T1(δ (1+ iω))]2R−1

×
∫ δ/2

−δ/2
[2λ0(y)T0((y+3δ/2)(1+ iω))−4λ1(y)T1((y+3δ/2)(1+ iω))]dy

+
∞

∑
R=1

α2R (1−α)Tk((x+3δ/2)(1+ iω)) [2T1(δ (1+ iω))]2R−1

×
∫ δ/2

−δ/2
[2λ0(y)T0((y+δ/2)(1+ iω))−4λ1(y)T1((y+δ/2)(1+ iω))]dy

+(1−α)
∫ δ/2

−δ/2
[λ0(y)Tk−1((x+ y+δ )(1+ iω))−2λ1(y)Tk((x+ y+δ )(1+ iω))]dy

= O((1−α)2)+Tk((x+δ/2)(1+ iω))
α

1−α2 [2T1(δ (1+ iω))]2

×
∫ δ/2

−δ/2
[2λ0(y)T0((y+δ/2)(1+ iω))−4λ1(y)T1((y+δ/2)(1+ iω))]dy

+(1−α)α2Tk((x+δ/2)(1+ iω)) [2T1(2δ (1+ iω))]
1+α2 [2T1(δ (1+ iω))]2

(1−α2 [2T1(δ (1+ iω))]2)2

×
∫ δ/2

−δ/2
[2λ0(y)T0((y+δ/2)(1+ iω))−4λ1(y)T1((y+δ/2)(1+ iω))]dy

+(1−α)α2Tk((x+δ/2)(1+ iω))
2T1(δ (1+ iω))

1−α2 [2T1(δ (1+ iω))]2

×
∫ δ/2

−δ/2
[2λ0(y)T0((y+3δ/2)(1+ iω))−4λ1(y)T1((y+3δ/2)(1+ iω))]dy

+(1−α)α2Tk((x+3δ/2)(1+ iω))
2T1(δ (1+ iω))

1−α2 [2T1(δ (1+ iω))]2

×
∫ δ/2

−δ/2
[2λ0(y)T0((y+δ/2)(1+ iω))−4λ1(y)T1((y+δ/2)(1+ iω))]dy

+(1−α)
∫ δ/2

−δ/2
[λ0(y)Tk−1((x+ y+δ )(1+ iω))−2λ1(y)Tk((x+ y+δ )(1+ iω))]dy;

f2 = O((1−α)2)+
∞

∑
R=1

α2RTk((x+δ/2)(1+ iω)) [2T1(δ (1+ iω))]2R−1



×
∫ δ/2

−δ/2
[2λ0(y)T0((δ/2− y)(1+ iω))+4λ1(y)T1((δ/2− y)(1+ iω))]dy

+
∞

∑
R=2

(2R−2)α2R−1(1−α)Tk((x+δ/2)(1+iω)) [2T1(2δ (1+iω))] [2T1(δ (1+iω))]2R−3

×
∫ δ/2

−δ/2
[2λ0(y)T0((δ/2− y)(1+ iω))+4λ1(y)T1((δ/2− y)(1+ iω))]dy

+
∞

∑
R=1

α2R−1(1−α)Tk((x+δ/2)(1+ iω)) [2T1(δ (1+ iω))]2R−2

×
∫ δ/2

−δ/2
[2λ0(y)T0((3δ/2− y)(1+ iω))+4λ1(y)T1((3δ/2− y)(1+ iω))]dy

+
∞

∑
R=1

α2R−1(1−α)Tk((x+3δ/2)(1+ iω)) [2T1(δ (1+ iω))]2R−2

×
∫ δ/2

−δ/2
[2λ0(y)T0((δ/2− y)(1+ iω))+4λ1(y)T1((δ/2− y)(1+ iω))]dy

= O((1−α)2)+Tk((x+δ/2)(1+ iω))
α2 [2T1(δ (1+ iω))]

1−α2 [2T1(δ (1+ iω))]2

×
∫ δ/2

−δ/2
[2λ0(y)T0((δ/2− y)(1+ iω))+4λ1(y)T1((δ/2− y)(1+ iω))]dy

+(1−α)α2Tk((x+δ/2)(1+ iω)) [2T1(2δ (1+ iω))]
α [2T1(δ (1+ iω))]

(1−α2 [2T1(δ (1+ iω))]2)2

×
∫ δ/2

−δ/2
[2λ0(y)T0((δ/2− y)(1+ iω))+4λ1(y)T1((δ/2− y)(1+ iω))]dy

+(1−α)α Tk((x+δ/2)(1+ iω))
1

1−α2 [2T1(δ (1+ iω))]2

×
∫ δ/2

−δ/2
[2λ0(y)T0((3δ/2− y)(1+ iω))+4λ1(y)T1((3δ/2− y)(1+ iω))]dy

+(1−α)α Tk((x+3δ/2)(1+ iω))
1

1−α2 [2T1(δ (1+ iω))]2

×
∫ δ/2

−δ/2
[2λ0(y)T0((δ/2− y)(1+ iω))+4λ1(y)T1((δ/2− y)(1+ iω))]dy;

f3 = O((1−α)2)+(−1)k
∞

∑
R=0

α2R+1Tk((x−δ/2)(−1− iω)) [2T1(δ (1+ iω))]2R

×
∫ δ/2

−δ/2
[2λ0(y)T0((δ/2− y)(1+ iω))+4λ1(y)T1((δ/2− y)(1+ iω))]dy



+(−1)k
∞

∑
R=1

(2R−1)α2R (1−α)Tk((x−δ/2)(−1−iω)) [2T1(2δ (1+iω))] [2T1(δ (1+iω))]2R−2

×
∫ δ/2

−δ/2
[2λ0(y)T0((δ/2− y)(1+ iω))+4λ1(y)T1((δ/2− y)(1+ iω))]dy

+(−1)k
∞

∑
R=1

α2R (1−α)Tk((x−δ/2)(−1− iω)) [2T1(δ (1+ iω))]2R−1

×
∫ δ/2

−δ/2
[2λ0(y)T0((3δ/2− y)(1+ iω))+4λ1(y)T1((3δ/2− y)(1+ iω))]dy

+(−1)k
∞

∑
R=1

α2R (1−α)Tk((x−3δ/2)(−1− iω)) [2T1(δ (1+ iω))]2R−1

×
∫ δ/2

−δ/2
[2λ0(y)T0((δ/2− y)(1+ iω))+4λ1(y)T1((δ/2− y)(1+ iω))]dy

+(−1)k(1−α)
∫ δ/2

−δ/2
[λ0(y)Tk−1((x+y−δ )(−1−iω))+2λ1(y)Tk((x+y−δ )(−1−iω))]dy

= O((1−α)2)+(−1)kTk((x−δ/2)(−1− iω))
α

1−α2 [2T1(δ (1+ iω))]2

×
∫ δ/2

−δ/2
[2λ0(y)T0((δ/2− y)(1+ iω))+4λ1(y)T1((δ/2− y)(1+ iω))]dy

+(−1)k(1−α)α2 Tk((x−δ/2)(−1−iω)) [2T1(2δ (1+iω))]
1+α2 [2T1(δ (1+ iω))]2

(1−α2 [2T1(δ (1+ iω))]2)2

×
∫ δ/2

−δ/2
[2λ0(y)T0((δ/2− y)(1+ iω))+4λ1(y)T1((δ/2− y)(1+ iω))]dy

+(−1)k(1−α)α2Tk((x−δ/2)(−1− iω))
2T1(δ (1+ iω))

1−α2 [2T1(δ (1+ iω))]2

×
∫ δ/2

−δ/2
[2λ0(y)T0((3δ/2− y)(1+ iω))+4λ1(y)T1((3δ/2− y)(1+ iω))]dy

+(−1)k(1−α)α2Tk((x−3δ/2)(−1− iω))
2T1(δ (1+ iω))

1−α2 [2T1(δ (1+ iω))]2

×
∫ δ/2

−δ/2
[2λ0(y)T0((δ/2− y)(1+ iω))+4λ1(y)T1((δ/2− y)(1+ iω))]dy

+(−1)k(1−α)
∫ δ/2

−δ/2
[λ0(y)Tk−1((x+y−δ )(−1−iω))+2λ1(y)Tk((x+y−δ )(−1−iω))]dy;

f4 = O((1−α)2)+(−1)k
∞

∑
R=0

α2RTk((x−δ/2)(−1− iω)) [2T1(δ (1+ iω))]2R−1



×
∫ δ/2

−δ/2
[2λ0(y)T0((δ/2+ y)(1+ iω))−4λ1(y)T1((δ/2+ y)(1+ iω))]dy

+(−1)k
∞

∑
R=2

(2R−2)α2R−1(1−α)Tk((x−δ/2)(−1−iω)) [2T1(2δ (1+iω))] [2T1(δ (1+iω))]2R−3

×
∫ δ/2

−δ/2
[2λ0(y)T0((δ/2+ y)(1+ iω))−4λ1(y)T1((δ/2+ y)(1+ iω))]dy

+(−1)k
∞

∑
R=1

α2R−1(1−α)Tk((x−δ/2)(−1− iω)) [2T1(δ (1+ iω))]2R−2

×
∫ δ/2

−δ/2
[2λ0(y)T0((3δ/2+ y)(1+ iω))−4λ1(y)T1((3δ/2+ y)(1+ iω))]dy

+(−1)k
∞

∑
R=1

α2R−1(1−α)Tk((x−3δ/2)(−1− iω)) [2T1(δ (1+ iω))]2R−2

×
∫ δ/2

−δ/2
[2λ0(y)T0((δ/2+ y)(1+ iω))−4λ1(y)T1((δ/2+ y)(1+ iω))]dy

= O((1−α)2)+(−1)kTk((x−δ/2)(−1− iω))
α2 [2T1(δ (1+ iω))]

1−α2 [2T1(δ (1+ iω))]2

×
∫ δ/2

−δ/2
[2λ0(y)T0((δ/2+ y)(1+ iω))−4λ1(y)T1((δ/2+ y)(1+ iω))]dy

+(−1)k(1−α)α2 Tk((x−δ/2)(−1−iω)) [2T1(2δ (1+iω))]
2α [2T1(δ (1+ iω))]

(1−α2 [2T1(δ (1+ iω))]2)2

×
∫ δ/2

−δ/2
[2λ0(y)T0((δ/2+ y)(1+ iω))−4λ1(y)T1((δ/2+ y)(1+ iω))]dy

+(−1)k(1−α)α Tk((x−δ/2)(−1− iω))
1

1−α2 [2T1(δ (1+ iω))]2

×
∫ δ/2

−δ/2
[2λ0(y)T0((3δ/2+ y)(1+ iω))−4λ1(y)T1((3δ/2+ y)(1+ iω))]dy

+(−1)k(1−α)α Tk((x−3δ/2)(−1− iω))
1

1−α2 [2T1(δ (1+ iω))]2

×
∫ δ/2

−δ/2
[2λ0(y)T0((δ/2+ y)(1+ iω))−4λ1(y)T1((δ/2+ y)(1+ iω))]dy;

c=
∞

∑
R=1

α2R+1Tk((x+δ/2)(1+iω)) [2T1(δ (1+iω))]2R−1 [4T2(δ (1+iω))+2
√

πT1(δ (1+iω))]

+
∞

∑
R=1

(1−α)α2RTk((x+δ/2)(1+iω)) [2T1(δ (1+iω))]2R−1 [8T2(δ (1+iω))]+O((1−α)2)



+
∞

∑
R=2

(2R−2)(1−α)α2RTk((x+δ/2)(1+iω)) [2T1(2δ (1+iω))] [2T1(δ (1+iω))]2R−3

×[4T2(δ (1+ iω))+2
√

πT1(δ (1+ iω))]

+
∞

∑
R=1

(1−α)α2RTk((x+δ/2)(1+iω)) [2T1(δ (1+iω))]2R−2 [4T2(2δ (1+iω))+2
√

πT1(2δ (1+iω))]

+
∞

∑
R=1

(1−α)α2R−1Tk((x+3δ/2)(1+iω)) [2T1(δ (1+iω))]2R−2 [4T2(δ (1+iω))+2
√

πT1(δ (1+iω))]

+4(1−α)Tk+1((x+δ/2)(1+iω))+α [2Tk+1((x+δ/2)(1+iω))+
√

π Tk((x+δ/2)(1+iω))]

=O((1−α)2)+Tk((x+δ/2)(1+iω)) [4T2(δ (1+iω))+2
√

πT1(δ (1+iω))]
α3[2T1(δ (1+ iω))]

1−α2 [2T1(δ (1+ iω))]2

+(1−α)Tk((x+δ/2)(1+ iω)) [8T2(δ (1+ iω))]
α2[2T1(δ (1+ iω))]

1−α2 [2T1(δ (1+ iω))]2

+(1−α)Tk((x+δ/2)(1+iω)) [2T1(2δ (1+iω))] [4T2(δ (1+iω))+2
√

πT1(δ (1+iω))]

× α4[2T1(δ (1+ iω))]

(1−α2 [2T1(δ (1+ iω))]2)2

+(1−α)Tk((x+δ/2)(1+iω)) [4T2(2δ (1+iω))+2
√

πT1(2δ (1+iω))]
α2

1−α2 [2T1(δ (1+ iω))]2

+(1−α)Tk((x+3δ/2)(1+iω)) [4T2(δ (1+iω))+2
√

πT1(δ (1+iω))]
α

1−α2 [2T1(δ (1+ iω))]2

+4(1−α)Tk+1((x+δ/2)(1+iω))+α [2Tk+1((x+δ/2)(1+iω))+
√

π Tk((x+δ/2)(1+iω))];

d = (−1)k
∞

∑
R=0

α2R+1Tk((δ/2− x)(1+ iω)) [2T1(δ (1+ iω))]2R

× [(1−α)(8T2(δ (1+ iω)))+α (2
√

πT1(δ (1+ iω))+4T2(δ (1+ iω)))]

+(−1)k
∞

∑
R=1

(2R−1)(1−α)α2RTk((δ/2−x)(1+iω)) [2T1(2δ (1+iω))] [2T1(δ (1+iω))]2R−2

×[α (2
√

πT1(δ (1+ iω))+4T2(δ (1+ iω)))]

+(−1)k
∞

∑
R=1

(1−α)α2RTk((δ/2− x)(1+ iω)) [2T1(δ (1+ iω))]2R−1

×[α (2
√

πT1(2δ (1+ iω))+4T2(2δ (1+ iω)))]

+(−1)k
∞

∑
R=1

(1−α)α2RTk((3δ/2− x)(1+ iω)) [2T1(δ (1+ iω))]2R−1

×[α (2
√

πT1(δ (1+ iω))+4T2(δ (1+ iω)))]

+(−1)k(1−α) [α [2Tk+1(3δ/2− x)(1+ iω))+
√

π Tk((3δ/2− x)(1+ iω))]]



= O((1−α)2)+(−1)kTk((δ/2− x)(1+ iω))
α

1−α2 [2T1(δ (1+ iω))]2

×[8(1−α)T2(δ (1+ iω))+α (2
√

πT1(δ (1+ iω))+4T2(δ (1+ iω)))]

+(−1)k(1−α)Tk((δ/2−x)(1+ iω)) [2T1(2δ (1+ iω))]
α2[1+α2 [2T1(δ (1+ iω))]2]

(1−α2 [2T1(δ (1+ iω))]2)2

× [α (2
√

πT1(δ (1+ iω))+4T2(δ (1+ iω)))]

+(−1)k(1−α)Tk((δ/2− x)(1+ iω))
α2(2T1(δ (1+ iω)))

1−α2 [2T1(δ (1+ iω))]2

× [α (
√

πT1(2δ (1+ iω))+2T2(2δ (1+ iω)))]

+(−1)k(1−α)Tk((3δ/2− x)(1+ iω))
α2(2T1(δ (1+ iω)))

1−α2 [2T1(δ (1+ iω))]2

×[α (2
√

πT1(δ (1+ iω))+4T2(δ (1+ iω)))]

+(−1)k(1−α) [α [2Tk+1(3δ/2− x)(1+ iω))+
√

π Tk((3δ/2− x)(1+ iω))]].

We then briefly present some comparison of different numerical methods for eq. (6) –
(10).

NUMERICAL SIMULATIONS

Finite differences-1

Numerical simulations were performed in [5] by using a standard finite difference
scheme for eq. (6) – (10). More precisely, we used an implicitfirst order upwind scheme
which also was used to establish the validity of this model (that is, the scheme can be
used for more refined models enabling to take into account thetemperature, to use the
ES model instead of the BGK one, or even to introduce 2D effects, cf. [5]). The scheme
is described in detail for example in [9].

Finite differences-2

Formulas (11), (12) can be understood (whenk = 0,1) as as a system of integrodiffer-
ential equations which can be numerically solved thanks to afinite difference scheme.
We discretized the integrals w.r.t.t andv with a second-order (trapeze) rule and truncated
the series in such a way that the remainder term is negligible.

Since except in the caseα = 0 (pure specular reflexion), theRth-term of the series
involves an integration on a 2R+2 or 2R+3-dimensional space, the computation can
be performed only if all terms but the first in the series are discarded. This means that
(whenα 6= 0), only a case withδ sufficiently large (i.-e. only slightly rarefied) can be
computed.



Unfortunately, such cases are known to be rather poorly modeled by eq. (6) – (10),
because the temperature plays a non negligible role in this situation, cf. [5]. As a
consequence, the discretization of (11), (12) can be used efficiently only whenα = 0
(pure specular reflexion case). In practice, even in this case, the numerical code leads to
slightly longer computations than the standard finite difference scheme (defined in the
previous subsection) for a given required precision. As a consequence, this approach is
merely useful for cross checking the results of other codes,but cannot be considered as
an efficient method for solving eq. (6) – (10).

DSMC

It is also possible to perform the computations of the solutions of eq. (6) – (10) thanks
to a particle method. Sinceh is a fluctuation, it is not nonnegative, and one is led to use
a semi-discretization (that is, still continuous w.r.t. time) of the form

h(t,x,v)∼
N

∑
i=1

ri(t)δxi(t)(x)δvi(t)(v),

wherexi(t), vi(t) andri(t) are the respective positions, velocities and numerical weights
of the particles, and where the weights can be either bigger or smaller than 0.

The method belongs to the class of DSMC methods in the sense that (diffuse) bound-
ary conditions as well as collisions (source term) are treated by a Monte Carlo approach.
We refer e.g. to [1] for the use of Monte Carlo methods in microfluidics.

As can be expected, since we are solving a time-dependent problem, the DSMC
method needs a large number of particles and many averages inorder to give acceptable
results, which lead to a performance very far from that of thefinite difference method.
We think nonetheless that it was interesting to test this method since for future compu-
tations involving more complex models (Boltzmann equation, 2D or 3D extensions) it
may be the only one available.

Comparisons of the different approaches

In order to show the coherence of the various numerical methods used to solve eq. (6)
– (10), we show the results obtained in a typical simulation.

The first figure shows the evolution of the second moment (L2) at point−δ/2 (i.-e.
a quantity which is directly related to the pressure at the moving wall), with respect
to time. The length of the channel in this experiment isδ = 0.3 and the frequency
is ω = 2π . In the DSMC computation, about 106 particles are used, and the result is
averaged over 100 independent experiments. In the figure, the red curve corresponds
to a DSMC computation (the random fluctuations can be observed) while the blue
and green curves correspond to the two finite differences methods (and are almost



indistinguishable). As can be seen, the convergence towards the permanent (periodic)
regime is already visible on a few periods of the oscillatingwall.
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plot of the second moment on the moving wall w.r.t time, δ=0.3, ω=2π

We recall that our main interest in [5] was to find the resonances/antiresonances in the
channel of the device, that is (for different values of the channel dimensionδ ) the values
of ω corresponding to extrema of the amplitude of the oscillation (in the permanent
regime) ofL2(t,−δ/2). We show in figure 2 an illustration of the computations done in
[5] with the finite difference scheme, where forδ = 0.3 (quite rarefied gas), andα = 0,
the evolution ofL2(t,−δ/2) is shown at various values ofω (that is,ω = 2π , ω = 8

3 π ,
ω = 4π , andω = 8π).
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The interested reader will find in [5] the analytical and numerical study (in the case
α = 1) of the position of resonances/antiresonances when the length δ of the channel
varies.

We hope that the computations presented in this paper will help to extend the results
of [5] in more complex cases (whenα 6= 1, or when the modeling is more detailed).
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