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We derive the complex Ginzburg-Landau equation for the dynamical self-diffraction of optical
waves in a nonlinear cavity. The case of the reflection geometry of wave interaction as well as a
medium that possesses the cubic nonlinearity (including a local and a nonlocal nonlinear responses)
and the relaxation is considered. A stable localized spatial structure in the form of a “dark”
dissipative soliton is formed in the cavity in the steady state. The envelope of the intensity pattern,
as well as of the dynamical grating amplitude, takes the shape of a tanh function. The obtained
complex Ginzburg-Landau equation describes the dynamics of this envelope, at the same time the
evolution of this spatial structure changes the parameters of the output waves. New effects are
predicted in this system due to the transformation of the dissipative soliton which takes place
during the interaction of a pulse with a continuous wave, such as: retention of the pulse shape
during the transmission of impulses in a long nonlinear cavity; giant amplification of a seed pulse,
which takes energy due to redistribution of the pump continuous energy into the signal.
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I. INTRODUCTION

Nonlinear systems which give different types of redis-
tribution of matter or energy (intensity) are intensively
studied in modern physics. Nonlinear processes can yield
unusual forms of energy distribution. As a rule, they
are described by nonlinear equations, such as the nonlin-
ear Schrödinger equation (NLS), the complex Ginzburg-
Landau equation (CGLE), their various modifications,
or other [1–4]. It has been shown in many instances that
the CGLE describes spatio-temporal localized structures,
also called “dissipative solitons” [1, 2, 5]. The NLS is
associated with a lot of physical phenomena, including
rogue waves [3]. In nonlinear systems amazing processes
may exist, such as strong bursts of energy during the
interaction of solitons [6].

Mixing of several waves in a nonlinear medium very
often leads to the redistribution of the wave intensi-
ties. As a rule, the parametric interaction processes
are considered, when a monochromatic wave is ampli-
fied by a pumping wave which has another frequency
[7, 8]. When the monochromatic waves interact in the
nonlinear medium, one observes the effects of the self-
action of the waves. The energy transfer is a peculiar-
ity of the degenerate four-wave mixing (FWM) in media
with a nonlocal response which takes place during self-
diffraction of waves from the dynamical grating [9–12].
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The background of this effect lies in a shift between the
light interference pattern and a dynamical refractive in-
dex grating. This brings an additional phase shift be-
tween the transmitted and diffracted waves during their
interference in the medium. The intensity ratio of input
waves is a control parameter, which defines the magni-
tude of the energy transfer and amplification coefficient
for a signal wave [13–15].

The FWM in media with a nonlocal response, when
the self-diffraction of waves on a dynamical grating oc-
curs, is one more physical system that is described by the
CGLE [16]. In the present work we find the CGLE which
describes the formation and evolution of the “dark” dis-
sipative soliton along the longitudinal direction of wave
propagation. The envelope of the refractive index distri-
bution E(t, z) has a soliton-like form. All other character-
istics of the FWM (wave intensities, diffraction efficiency)
are expressed through this function E(t, z). The stable
soliton-type pattern is obtained as a consequence of the
nonlocal nature of the nonlinear response, which provides
an additional phase shift for the waves diffracted by an in-
homogeneous structure of the refractive index, and there
is the interference between the diffracted and the propa-
gating waves. The present research allows one to predict
new effects of nonlinear wave interaction, based on the
properties of the soliton-like refractive index pattern. As
examples, we predict new effects, which take place during
the interaction of a signal pulse and a continuous pump
wave, and which are determined depending on suitable
initial conditions for the interacting waves and nonlin-
earity of the medium. One of them is the retention of
the shape of a signal pulse at the end of a bulk nonlinear
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medium, an application of which, for example, can be the
transmission of pulses in long optical lines. A second ef-
fect is a significant nonlinear amplification of a weak sig-
nal pulse at the expense of a continuous pumping wave,
when a backward pumping wave is almost completely re-
flected from the nonuniform grating and redistributes its
energy to a forward signal pulse. This phenomenon can
be used for the creation of pulses of great energy.

II. DERIVATION OF THE COMPLEX
GINZBURG-LANDAU EQUATION FOR THE

REFLECTION FOUR-WAVE MIXING

The four-wave mixing is a process which in the degen-
erate case (all waves have the same frequencies) leads to
many effects of self-action of waves during their inter-
action in a nonlinear medium. The phenomenon of the
self-diffraction of waves during FWM combines three si-
multaneous processes: the recording of a time-dependent
refractive index grating by the light interference pattern,
the wave diffraction by the grating, and the interference
between the propagated and diffracted waves. When the
medium displays a nonlocal response due to some kind of
transport mechanism, one can write an evolution equa-
tion governing the dynamics of the induced nonlinearity,
which is added to the FWM coupled wave system.

The FWM has been previously investigated in the
transmission geometry, when the coupled waves record
the transmission dynamical grating and diffract on it (see
FIG. 1a). In nonlocal media both the intensity pattern
and the grating amplitude distribution share the proper-
ties of a bright dissipative soliton [16–20]. We have de-
rived the cubic CGLE with a time dependent gain/loss
coefficient which describes the dynamics of the FWM in
the restrictive case of a purely nonlocal response of the
medium (γ is a purely imaginary constant). Meanwhile
for the FWM in the reflection geometry (see FIG. 1b)
the distribution of the intensity of the interference pat-
tern shares the properties of a dark dissipative soliton.

Transmission and reflection geometries differ in the di-
rection of the grating-vector ( ~Kg) relative to the wave-
vector components (~kj , j = 1, 2, 3, 4). While in the
transmission geometry the propagation of the waves is
considered in the (x, z) plane and the grating vector is
directed just along the x-axis, in the reflection geome-
try the problem is one-dimensional and all the vectors
are parallel to the z-axis. Also these two systems have
different first integrals. If one defines a symbol for de-
scribing the geometry (g = 1 for transmission, g = −1
for reflection), the FWM system in the nonlocal medium

FIG. 1: Scheme of degenerate FWM and ~k vectors diagrams.
~Kg = ~k1−~k2 = ~k4−~k3 is the grating vector. (a) Transmission
geometry. (b) Reflection geometry. The numbers denote the
input waves. Full fines show the maxima of the interference
pattern, dashed lines show the maxima of the grating ampli-
tude. The arrow labeled iχ(3) indicates the direction of a shift
of the grating amplitudes relative to the maximum intensities
of the light interference pattern.

can be written in the unified way,

∂zA1 = −iEA2, ∂zA2 = giEA1,

∂zA3 = −iEA4, ∂zA4 = giEA3, (1)

∂tE = γ
Im

I0
− E

τ
, (2)

Im = A1A2 + A3A4, (3)
I0 = |A1|2 + |A2|2 + |A3|2 + |A4|2, (4)
Id = −|A1|2 + |A2|2 + g(−|A3|2 + |A4|2), (5)

where Aj , j = 1, 2, 3, 4 are the slow variable amplitudes of
interacting waves, E is the amplitude of the grating, γ is
a complex constant which describes the maximum ampli-
fication of the medium, τ is a time relaxation constant of
the grating, Im is the interference pattern, I0 is the total
intensity, Id is the relative net gain. The first integral is
I0 in the transmission geometry and Id in the reflection
geometry. Equation (2) is the evolution equation, where
for simplicity we include only two terms [10]: amplifica-
tion of the grating amplitude proportional to the light
intensity at every local point z, and usual exponential
(dielectric) relaxation of the dynamical grating.

The coupled wave eqs. (1) for slow variable amplitudes
are derived from the Maxwell’s wave equation, taking
into consideration that the amplitude of the dynamical
grating is determined as E = 4ε exp(i ~Kg~r) + c.c. In
the approximation of small variations of the refractive
index we have 4ε ∼= 2n0∆n , where 4ε and ∆n are
respectively the variations of the dielectric permittivity
and the refractive index of the medium induced by the
laser radiation, and n0 is the average refractive index in
the medium. In our consideration we take into account
that the nonlinear gain coefficient is a complex constant
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γ = γL + iγNL, where γL and γNL describe, respectively,
the local and nonlocal responses of the medium. The gain
coefficient in a nonlocal medium can be written as [10]
γ = 2π∆nmax(cosΦg + i sinΦg)/λ, where Φg describes a
shift of the dynamical grating with respect to the max-
ima of the interference pattern (minimal spacing between
maxima of the light lattice and the refractive index grat-
ing in a positive direction of a polar (unidirectional) axis
of the medium), and ∆nmax is the maximally possible
grating amplitude in the given medium. Both these val-
ues are determined by the physical mechanisms that take
place during the grating recording. The complex values
of γ, 4ε and E show that a diffracted wave gets some ad-
ditional phase shift relative to a propagated wave after
the diffraction from the refractive index grating. In the
case of a purely nonlocal response (γL = 0 , γ = iγNL)
this phase shift equals −π/2 for the wave diffracted in
the direction of the polar axis and π/2 for the wave
diffracted in the opposite direction. In this special case
in the steady state, the wave equations (1) becomes real,
where the waves 1 and 4 are amplified at the expense
of the waves 2 and 3, which transfer their energy to the
waves 1 and 4 respectively. The energy transfer between
interacting waves takes place if the medium has a purely
nonlocal response. When the response is complex and
includes a local component, both a phase transfer and
an energy transfer occur between the interacting waves.

We assume the following normalization in the system
(1)–(5): the variable E is dimensionless, the coefficient
γ has the dimension [γ] = T−1, and the independent
variable z is normalized as z = [k2

0/(2kź)]ź, where k0 is
the amplitude of the wave-vector in the free space, ź is
the longitudinal spatial coordinate and kź is ź-component
of the wave-vector in the nonlinear medium.

Like in the transmission geometry [16], the system (1)–
(5) in five complex variables in the reflection geometry is
reducible to an intrinsic system in two complex variables
E and Jm = Im/I0,

∂tE = γJm − E/τ, (6)
∂zJm = −iE − 2iĒJmJm + 2iEJmJ̄m. (7)

Eliminating Jm between eqs. (6)–(7) yields

E ≡ ∂t∂zE +
1
τ

∂zE + iγE − 2i

τ |γ|2 ×[
γ̄ − γ

τ
|E|2 + γE∂tĒ − γ̄Ē∂tE

]
× [E + τ∂tE ] = 0. (8)

This is our final equation, to which we apply the reductive
perturbation method to obtain the CGLE. Like in [16,
21], we define a multiple scale expansion in which the
function E is of order ε, where the function ϕk depends
on a set of variables associated with these various scales:

E(z, t) = ε

+∞∑

k=0

εkϕk(Z0, . . . , Zk, . . . , T0, . . . , Tk, . . . ),

Zk = εkz, Tk = εkt, E = ε

+∞∑

k=0

εkEk, (9)

and we require each coefficient Ej to vanish.
The method of a multiple scale expansion applies to

weakly dispersive and weakly nonlinear systems which
are described by a wave equation in the small-amplitude
limit. It was used to derive the NLS equation, which
shows behavior of envelope solitons. This method per-
mits one to impose appropriate conditions in the multi-
dimensional space that eliminate the divergences of the
asymptotic expansion for small values of ε (see chapter 3
in [21]).

At zero-th order, the equation for the function ϕ0:

Lϕ0 = 0, L ≡ ∂T0∂Z0 +
1
τ

∂Z0 + iγ, (10)

admits for solution the complex plane wave,

ϕ0 = A(Z1, Z2, T1, T2, . . . )eΦ0 , Φ0 = i(qZ0 − ωT0), (11)

where the phase Φ0 depends on the variables T0 and Z0,
the amplitude factor A is a function depending on the
other space and time scales, and the constants q, ω obey
the dispersion relation

qω + i
( q

τ
+ γ

)
= 0. (12)

From this equation it follows that the wave-vector q and
the pulsation ω take complex values, a consequence of
both the relaxation 1/τ and the complex nature of γ.

At first order, in the equation for ϕ1

Lϕ1 = −G1e
Φ0 −G1e

Φ0 ,

G1 ≡ iq
∂A

∂T1

− γ

q

∂A

∂Z1

, (13)

G1 must vanish to avoid ϕ1 to diverge, providing

ϕ1 = 0, A = Ψ(Z1 − vgT1, Z2 − vgT2, T2, . . . ),(14)

in which the group velocity vg = iγ/q2 is generically com-
plex and the complex function of integration Ψ is to be
determined. Let us introduce the two complex conjugate
independent variables X1, Y1,

X1 = Z1 − vgT1, Y1 = X1 = Z1 − vgT1. (15)

In the second order equation for the evolution of ϕ2,

Lϕ2 = −G2e
Φ0 −G2e

Φ0 , (16)

the cancellation of the secular terms requires G2 to van-
ish, which defines two complex conjugate nonlinear PDEs
for Ψ(X1, T2) and Ψ̄(Y1, T2), and yields the value ϕ2 = 0.
The resulting equation G2 = 0 is the desired CGLE,

G2 ≡ i
∂Ψ
∂T2

− i
γ

q3

∂2Ψ
∂X2

1

− 4
γ

q3

=(q)
q̄

e2<(Φ0) |Ψ|2 Ψ = 0,(17)

where <(Φ0) denotes the real part of the phase Φ0, =(q)
indicates the imaginary part of the wave vector q. The
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obtained CGLE describes the spatio-temporal dynamics
of the grating amplitude envelope during the FWM in
a nonlinear medium with a complex response (both lo-
cal and nonlocal). The complex coefficients in the above
CGLE arise from the relaxation of the photoinduced re-
fractive index as well as from the local component of the
nonlinear response. The same dynamics will be for the
distribution of the intensity in the medium. A variety
of solutions of the CGLE (17) will give possible localized
structures and their behaviors that can be implemented
during the reflection FWM.

III. ALTERATION OF THE GRATING
AMPLITUDE DISTRIBUTION IN THE STEADY

STATE

In the simplest case, the four-wave mixing in the re-
flection geometry can be reduced to the two-wave mixing
(TWM), which describes the interaction of forward and
backward waves. Then the FWM momentum conserva-
tion law takes the form 2k1 = 2k2, where k1, k2 are the
z-components of the wave vectors for the forward and
backward waves respectively. In the next sections we
consider the effects which arise in this simplest case of
the TWM in a medium with a purely nonlocal response
γ = iγNL, i.e. there is a constant space shift, equal to one
quarter of the period of the light interference pattern,
between the fringe interference pattern and the photoin-
duced dynamical grating. We consider the case where
the grating is shifted in the +z direction, so the signal
beam (entered on the input boundary z = 0) is ampli-
fied, but the backward beam (entered on the boundary
z = d) is the pump beam. In the case of a purely non-
local response, the system (1)–(3) simplifies to a set of
real equations. In the steady state the distribution of the
grating amplitude is then connected with the maxima of
the interference pattern by the following relation,

E(z) = γNLτIm(z)/I0(z). (18)

The solution for the grating amplitude is

E(z) =
1√
2

√
1 + tanh

(
γNLτz +

1
2

log
(

4
I2
d

)
− p

)
,(19)

where the first integral is I2
d = I2

0 −4I2
m, and the integra-

tion constant p can be found from the input boundary
conditions. If one takes account of (18), the normalized
intensity pattern Im/I0 has the same distribution (19)
(up to the constant γNLτ), but the patterns Im/I0 and
E are shifted by a phase of π/2 (equivalent to the space
shift of Λ/4, where Λ is the period of the interference
pattern along the longitudinal z-direction). The spatial
structure of the nonuniform intensity pattern is shown in
FIG. 2, where the inflection point of the tanh function is
located inside the bulk of the nonlinear medium.

By changing the input intensity ratio, the envelope
Im(z)/I0(z) (as well as E(z)) moves along the z-direction

FIG. 2: Localized structure of the dark dissipative soliton.

without changing its form (see FIG. 2). So, one can de-
fine this spatial nonuniform pattern as the dark dissipa-
tive soliton. Modulation of the refractive index takes the
same structure as the dark dissipative soliton, in which
the interacting waves undergo diffraction. The stationary
solutions for the wave amplitudes are

A1(z) = C1e
U(z) + C2e

−U(z),

A2(z) = C1e
U(z) − C2e

−U(z). (20)

They are determined by the area U(z) under the curve
of the grating amplitude envelope,

U(z) =

z∫

0

E(z)dz =
1
4

ln
(√

(ew)2 + ew + ew +
1
2

)
,(21)

where w = 2γNLτz + log
(
4/I2

d

) − 2p. Denoting d the
thickness of the medium, A10 = A1(z = 0), A2d =
A2(z = d) the amplitudes of the input waves, A1(d) =
A1(z = d), A2(0) = A2(z = 0) the amplitudes of the out-
put waves, and Ud the area under the grating amplitude
envelope within the whole medium Ud =

∫ d

0
E(z)dz, the

constants of integration in (20) evaluate to

C1 =
(
A10e

−Ud + A2d

)
/(2 cosh Ud),

C2 =
(
A10e

Ud −A2d

)
/(2 cosh Ud), Id = 4C1C2, (22)

and the constant p is determined by the conditions at the
medium boundary,

E(0) = γNLτ
A10A2(0)

A2
10 + A2(0)2

(23)

=
1
2

√
1 + tanh

(
1
2

log
(

4
I2
d

)
− p

)
.

From the solution (20), one sees that the intensity of
the output signal wave Iout

1 is determined by the area un-
der the grating amplitude envelope between the bound-
aries of the nonlinear medium. The spatial location of
the grating envelope depends on the input intensity ratio
I10/I2d, as seen from FIG. 3.
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FIG. 3: Stationary distribution of the grating amplitude for
different input intensity ratios. 1: I10/I2d = 1, Ksig = 2; 2:
I10/I2d = 0.05, Ksig = 20; 3: I10/I2d = 1.2, Ksig = 1. The
normalized coupling constant of the medium is Γ = γNLτd =
3.

The inflection point of the tanh function of E(z) is
located outside the boundaries for small signal and big
pump intensity. The grating amplitude has uniform dis-
tribution within the boundaries, and the gain coefficient
of the signal (Ksig = Iout

1 /I10) is maximal possible in a
given nonlinear medium. When one increases the signal
beam intensity as compared to the pump beam inten-
sity, which is accompanied by a motion of the grating
amplitude envelope, the inflection point of the E(z) tanh
function is already located inside the boundaries, so that
the nonuniform distribution of the grating amplitude is
formed inside the nonlinear medium with the maximum
being located close to the output boundary z = d. The
area under the envelope will decrease, then the amplifica-
tion coefficient of the signal beam decreases too. In this
way we show that, by changing the input intensity ratio,
the coefficient of the energy transfer will also be changed.
The reason for that is the motion of the grating ampli-
tude envelope and the self-formation of either a uniform
distribution or a nonuniform structure of the grating am-
plitude in the nonlinear medium. At the same time the
most pronounced effects connected with the alteration of
the signal beam will occur when the nonuniform dynam-
ical grating is located inside a nonlinear medium. Then
small changes of the intensity ratio will lead to the mo-
tion of the grating envelope and therefore to significant
changes of the output signal.

The amplification coefficient is also determined by the
coupling constant, which complies with the maximum
value of the nonlinearity in the optical cavity. In the
steady state the coupling constant is Γ = γNLτd. FIG. 4
displays the dependence of the grating amplitude en-
velopes on the value of Γ. This figure displays the fol-
lowing remarkable feature peculiar to just the reflection
geometry of the wave-mixing: the nonunifrom distribu-
tion of the grating envelope may be created in media

FIG. 4: Stationary distribution of the grating amplitude for
different normalized coupling constants Γ = γNLτd. I10/I2d =
0.05.

with small or average nonlinear coefficients. Therefore,
in order to implement the effects of beam control, large
nonlinearities of the medium are unnecessary. Such ef-
fects are more efficient in media with small nonlinearities.

IV. PULSE PROPAGATION IN THE TWM

A. Transmission of a pulse retaining the pulse
shape

The motion of the soliton-like envelope of the dynami-
cal grating owing to changes of the input intensity ra-
tio becomes a very fruitful feature to archive various
kinds of manipulations of laser pulses. Here we con-
sider two effects which take place during the interac-
tion of a pumped continuous wave with a pulse sig-
nal in a nonlinear cavity, where a phase-shifted dynam-
ical holographic grating is created in some way. We
choose a Gaussian beam with respect to time in the form
I10(t) = Ib + Isig exp

(−t2/τ2
sig

)
, where Ib is the intensity

of the background, Isig is the maximum of the signal pulse
and τsig is its duration. In this way, we consider the case
of the self-diffraction of a signal pulse on a given grating,
which is created by a small background intensity Ib of the
wave 1 and by the continuous pump wave 2. We point
out that the background can be negligibly small (e.g. a
scattered wave, a reflected wave), but it should exist to
build up the given grating. We will show that the out-
put signal will depend on the intensity ratio between the
pump and the maximum signal, on the coupling coeffi-
cient of the nonlinear medium as well as on the properties
of the signal pulse itself, i.e. on its duration and even on
its shape.

In the case of a weak pump the signal pulse retains its
shape on the output of the cavity. In FIG. 5 we show that
the shape of the output signal coincides with the shape
of the input Gaussian signal when the pump intensity
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FIG. 5: Retention of the shape of the Gaussian pulse during
its propagation in any long optical cavity, which contains the
refractive index grating having the “dark” soliton-like struc-
ture. The parameters of the Gaussian signal are Isig = 1,
Ib = 0.1, τsig/τ = 10 (all intensities are given in arbitrary
units), the normalized coupling constant is Γ = γNLτd = 5.

FIG. 6: Amplification and distortion of the Gaussian pulse
during TWM upon increase of the pump intensity. 1 - the
intensity of the input signal, 2 - the output signal Iout

1 for the
pump intensity I2d = 10, 3 - Iout

1 for I2d = 30, 4 - Iout
1 for

I2d = 50. The parameters of the signal pulse and the coupling
constant are identical to those in FIG. 5.

is smaller than or comparable to the maximum signal
intensity (I2d ≤ Isig). One can transfer pulses in a long
transmission line without distorsion of the pulse shape,
provided one creates the conditions that a weak backward
scattering wave is created and involved in the recording
of the shifted dynamical grating inside this transmission
line. When the pump is increased, the output signal is
amplified and the pulse shape is distorted (see FIG. 6).

The effect of the signal amplification depends strongly
on the value of the photoinduced optical nonlinearity, but

FIG. 7: Dependence of the gain of the signal pulse intensity
on a small pumping for different coupling constants. The
parameters of the signal pulse are identical to those in FIG. 5.

FIG. 8: Dependence of the gain on the half-width of the Gaus-
sian pulse, for the coupling constant Γ = 5.

in a nonobvious way: the amplification can be lowered by
increasing the coupling constant Γ (see FIG. 7). At the
same time there exists an optimal value of Γ when the
maximum amplification is reached. The explanation of
this phenomenon is the same as that discussed in the Sec-
tion III for the TWM in the steady state: for high values
of Γ the grating amplitude distribution is uniform over a
volume of the nonlinear medium. In this case, changes of
the input intensity ratio have little influence on the re-
distribution of the grating amplitude, this will have little
effect on the intensity of the output signal. Big changes
can be reached when the distribution of the grating am-
plitude is not uniform over the volume of the medium.
In such a case small changes of the input intensity ratio
lead to significant redistributions of the grating ampli-
tude, and as a result the output signal will undergo large
changes as well.

The gain for the reflection TWM depends on the steep-
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ness of the fronts of the signal beam. In the case of a
Gaussian signal beam, the gain coefficient increases when
the half-width of the pulse decreases (see FIG. 8). The
shape of the output pulse will also change significantly.
Features connected with the amplification of short laser
pulses in the reflection TWM scheme are considered in
the next subsection.

B. Giant amplification of a short laser pulse

Amplification of a weak short pulse depending on the
pump intensity and the maximum value of the nonlinear-
ity in the case of large pumping is shown in FIG. 9.

Like in FIG. 7 this dependence is not one-to-one with
respect to the coupling constant. The amplification of
the signal can be small for both low and high values of
Γ. The gain coefficient becomes optimal for certain small
values of Γ. In this specific case the output signal may
almost reach the value of the pump intensity. In FIG. 10
we show the giant amplification of a seed Gaussian pulse
due to high pumping in the range of the optimal values
of the coupling constant.

FIG. 9: The gain of a short Gaussian pulse for different values
of the coupling constant. τsig/τ = 3, Isig = 1, Ib = 0.1.

FIG. 10: Giant amplification of a short seed pulse for opti-
mal values of the coupling constant. The parameters of the
input signal pulse are identical to those in FIG. 9; the pump
intensity is I2d = 200 and the coupling constant is Γ = 3.
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FIG. 11: Changes of the grating amplitude envelope (a) and
redistribution of the total intensity inside the cavity (b) under
the TWM of a seed pulse with strong pumping in a bulk
nonlocal medium. The parameters used in calculation are
identical to those in FIG. 10.

In FIG. 11 we calculate the rebuilding of the grating
amplitude and the redistribution of the total intensity I0

during the propagation of the pulse in the cavity, where
the nonlocal dynamical grating is created. As one can
see, they are both redistributed compared to their back-
ground values when a weak pulse appears on the input
boundary. In this case, the total intensity is redistributed
inside the cavity in such a way that its very big maxi-
mum is concentrated close to the output boundary z = d,
whereas its very pronounced minimum is located near the
input boundary z = 0. In other words, this effect can be
imagined as: all the pump wave is reflected from the
dynamical grating being photoinduced owing to a weak
signal beam, and this is displayed as an expanded and

significantly enhanced output pulse.
V. CONCLUSION

We have developed a model of formation of dissipative
spatial soliton which takes place during the interaction
and self-diffraction of coherent waves in media with a
nonlocal nonlinear response. We consider the media with
cubic nonlinearity, and only two effects are taken into ac-
count, namely the light-induced modulation of the refrac-
tive index being proportional to the light intensity and
the temporal relaxation of the refractive index dynami-
cal grating. In the simplest case of the fringe interference
pattern, and when a nonlocal dynamical grating is shifted
in space relatively to the light pattern, the envelope of
the maximum amplitudes takes a soliton-like form cre-
ated along the direction of wave propagation z. The spa-
tial structure of the interference pattern (Im(z)/I0(z))
has the form of a dark dissipative soliton in the case
of reflection geometry of wave interaction. The same
spatial pattern occurs for the distribution of the ampli-
tudes of the grating E(z). We have derived the complex
Ginzburg-Landau equation, which describes the dynam-
ics of self-formation of stable dissipative soliton as well
as its evolution when the input conditions are changed.
The expansion of this model for the case of interaction
and diffraction of noncoherent waves with different fre-
quencies is of undoubted interest.

We have explained that the coefficient of energy trans-
fer depends on whether a uniform or a nonuniform dis-
tribution of the grating amplitude is formed within the
volume of the nonlinear medium. This, in turn, is de-
termined by the intensity ratio of the input waves. We
have found two interesting effects arising because of the
interaction of a signal pulse with a continuous pump illu-
mination in a nonlocal medium, the reason for that being
a redistribution of the dynamical grating. The first ef-
fect is the restoration of the form of the input pulse on
the output which takes place when the pump intensity
is either comparable to or less than the maximum of the
signal pulse. But when one increases the pump intensity
as compared to the signal, one observes a significant non-
linear amplification of a seed pulse. This effect is due to
the fact that the seed pulse provokes the creation of such
a grating, which reflects almost the entire pump wave in
the direction of the signal. Different types of applications
can be used in the system depending on suitable input
conditions, for example, transmission of pulses over long
distance in fiber amplifiers, or significant amplification of
short pulses in a nonlinear optical cavity.
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