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Abstract

We consider in this paper the initial-boundary value problem for the 1D neutron transport equation with
isotropic scattering, set in some bounded interval with entering boundary conditions. The usual parabolic scaling
yields the diffusive limit. A surrogate model, coupling transport and diffusion equations, is then introduced in
order to accurately assess the value of specific quantities of interest. The control of the quality of the computation
(with respect to such a quantity of interest) is performed by means of a modeling error estimation method, coupled
to an associated algorithm enabling to adapt the surrogate model if necessary.
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1. Introduction

The always growing computing resources, associated with more and more precise and
validated mathematical models, enable to simulate very complex physical phenomena
nowadays. However, there are some families of physical problems for which the initial
simulation model is still intractable by current numerical capabilities. A coarser model
(usually associated with some homogenization procedure or asymptotic limit, and some-
times involving the coupling of different types of equations) is thus mandatory and leads
to a multiscale approach of the problem. For instance, a large set of multiscale methods
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has been recently introduced in the context of nano engineering (see [26] for an overview).

In this paper, we deal with physical problems governed by a kinetic equation, and more
specifically with problems of neutrons transport (and radiative transfer) which naturally
appear in the nuclear industry (or e.g. in astrophysics). The linear kinetic equation which
is involved, sometimes referred as linear Boltzmann’s equation, takes into account physical
phenomena associated with particle transport such as collision, absorption, and emission;
its solution enables to know the density of particles with a given velocity at a given space-
time coordinate. However, discretization of the transport equation in practical applications
involves a huge number of degrees of freedom (since the phase space is of high dimension)
which makes a precise simulation a numerical challenge.
When the mean free path of the particles is small w.r.t. the characteristic length of

the physical phenomena (that is Knudsen’s number Kn is << 1, cf. [14]), the transport
equation can be approximated with a diffusion equation. This latter equation, which can
be seen as an homogenized equation at the macroscale, and which concerns the density
in the physical space instead of the phase space, is therefore used wherever it is valid,
leading to a model reduction and more affordable computations. The resulting coarse
model (denoted as the surrogate model in the following) is then made of two coupled
concurrent models: (i) a mesoscale model governed by the transport equation and applied
in critical subregions where a fine solution is required or in which a macroscale model is
not reliable; (ii) a macroscale model governed by the diffusion equation in the rest of the
domain.
Usually, the simulation of a physical phenomenon is performed in order to get informa-

tion on a set of specific quantities of interest. From the analyst’s point of view, a critical
issue is therefore to know whether or not the simulation model is sufficiently relevant for
the assessment of this quantity of interest. In other words, information on modeling and
discretization errors is required. During the last decade, and specially in the Computa-
tional Mechanics community, tools have been introduced in order to assess the quality
of the computerized model [42,43]. Moreover, dedicated algorithms have also been intro-
duced in order to adapt the surrogate model up to an acceptable error level [44,48]. In
this paper, we extend these tools to the framework of neutron transport (or radiative
transport) simulated with a coupled transport/diffusion model. In order to assess the
transferability of these tools to this setting, we consider a simple 1D transport model with
isotropic scattering, and choose the neutron macroscopic density at a given point and a
given time as the quantity of interest.

The paper is structured as follows: after this introduction, Section 2 describes the ref-
erence transport problem; Section 3 presents the surrogate model using the diffusion
approximation; in Section 4, we recall basics on modeling error estimation and extend
the methodology to the framework of neutrons transport; Section 5 shows some numer-
ical results that illustrate performances of the method; finally, conclusions are drawn in
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Section 6.

2. The reference model

2.1. The transport equation

We consider an open bounded domain X of R3, with boundary ∂X , populated with
neutrons. Each neutron is defined by its position x, the direction n of its velocity, and its
velocity modulus v (related to its kinetic energy E = mv2/2). The transport equation [25]
describes the evolution of a population of neutrons in this domain occupied by a medium
which is in interaction with the neutrons (uranium nuclei for instance). This equation
aims at calculating the neutron density in the phase space, denoted by u(x,n, E, t), and
defined as the probable number of neutrons at position x with velocity direction n and
energy E at time t.
We also introduce the main macroscopic quantities, that is the neutron density ρ(x, E, t)

of a given energy E, which is the integral of u over all velocity directions:

ρ(x, E, t) :=
∫

Ω
u(x,n, E, t)dn, (1)

and the neutron current j(x, E, t) of a given energy E:

j(x, E, t) :=
∫

Ω
vn u(x,n, E, t)dn, (2)

where Ω is the unit sphere of R3.

Denoting by Σ := Σ(x) the scattering cross section (i.e. the probability of collision per
unit distance travelled), and by f the kernel for direction and energy changes of a neutron
due to collision, the transport equation satisfied by u reads:

∂u

∂t
+ vn ·∇xu+Σvu =

∫

R+

∫

Ω
Σ′fv′u′dn′dE ′, ∀(x,n, E, t) ∈ X ×Ω×R+ × [0, T ] (3)

with u = u(x,n, E, t), u′ = u(x,n′, E ′, t), Σ = Σ(x, E), Σ′ = Σ(x, E ′) and f = f(x;n′, E ′ →
n, E). Finally, E ′ = m |v′|2/2. The transport equation thus includes evolution, advection
and scattering terms.
Since our objective is to assess the performance of modeling error control techniques in

the context of kinetic equations, we select one of the simplest meaningful problems: we
consider only the elastic scattering occuring within a group of neutrons that all have the
same energy E, and we assume that the collision process is isotropic, so that the transport
equation consists of finding u := u(x,n, t) such that:

∂u

∂t
+ vn ·∇xu = Σv

[

1

4π

∫

Ω
u′dn′ − u

]

= −σSu, ∀(x,n, t) ∈ X × Ω× [0, T ] (4)
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where u′ = u(x,n′, t), σ = σ(x) := Σ(x)v, and S is the scattering operator.

Note that Σ(x) does not need to be bounded below by a strictly positive constant: we
keep the possibility that some regions be completely transparent.

In order to scale the problem, we introduce the parameter ε (Knudsen’s number) defined
as the ratio of the average distance traveled by a neutron between two successive collisions
(mean free path λ = 1/Σ) and a characteristic length of the problem. Once the time has
also been scaled (in such a way that it is compatible with the typical time of evolution of
ρ by diffusion), the transport equation (4) comes down to finding uε(x,n, t) such that:

ε
∂uε

∂t
+ vn ·∇xuε = −1

ε
σSuε, ∀(x,n, t) ∈ X × Ω× [0, T ]. (5)

We impose for the transport problem initial and entering boundary conditions which
respectively read:

uε(x,n, 0) = uI(x) ∀(x,n) ∈ X × Ω ; uε(x,n, t) = ud(x,n, t) ∀(x,n) ∈ Γ− (6)

with uI a given nonnegative function (chosen independent of n in the paper), and Γ− =
{(x,n) ∈ ∂X × Ω;νx · n < 0}, νx being the outer normal of ∂X at point x.

2.2. The 1D model

In several cases, equations of transport theory can be written in 1D; this is the case
when one considers for X an infinite 2D or 3D strip, of width L on the transversal axis x
and invariant by a translation perpendicular to this axis (see [34]). The 1D problem then
consists in finding uε := uε(x, µ, t) such that:

ε
∂uε

∂t
+ µv

∂uε

∂x
+

1

ε
σSuε = 0 ∀(x, µ, t) ∈]0, L[×[−1, 1]× [0, T ]

uε(0, µ, t) = u0(µ, t), ∀µ ≥ 0

uε(L, µ, t) = uL(µ, t), ∀µ ≤ 0

uε(x, µ, 0) = uI(x),

(7)

with µ the cosine of the angle between Ox and the velocity (of constant modulus v). For
the neutron transport with isotropic scattering we consider, the scattering operator S
then reads:

Su = u− 1

2

∫ 1

−1
u(x, µ′, t)dµ′. (8)
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In [19], existence and uniqueness of the solution is addressed for problem (7) as well as
for the associated stationary problem.

The 1D transport problem (7) can also be written under the weak form:

Find uε ∈ L∞ such that B(uε, wε) = F (wε) ∀wε ∈ W (9)

with

B(uε, wε) =
∫ T

0

∫ L

0

∫ 1

−1
uε(x, µ, t) {−ε∂t − µ v∂x +

1

ε
σ S}wε(x, µ, t)dxdµdt,

F (wε) = ε
∫ 1

−1

∫ L

0
uI(x)wε(x, µ, 0)dxdµ+

∫ T

0

∫ 1

0
µwε(0, µ, t) u0(µ, t) dµdt

−
∫ T

0

∫ 0

−1
µwε(L, µ, t) uL(µ, t) dµdt,

W = {w(x, µ, t) ∈ D([0, L]× [−1, 1]× [0, T [);

w(0, µ, t) = 0 ∀µ ≤ 0, w(L, µ, t) = 0 ∀µ ≥ 0}.
D denotes the space of C∞ functions with compact support, which implies that functions
w ∈ W are such that w(x, µ, T ) = 0.

2.3. Computation of an approximate solution

Problem (7) can be numerically solved by means of a specific discretization in each
dimension. In the present work:
– the space domain [0, L] is divided into P elements, with associated nodes xp (p =
1, 2, . . . , P + 1);

– the time domain [0, T ] is divided into N time steps, with associated time points tn
(n = 1, 2, . . . , N + 1);

– the velocity domain [−1, 1] is divided into K steps, with associated points µk (k =
1, 2, . . . , K+1). In practice, we first divide the angular domain [−π, 0] into K angular
steps, with angular points θk (k = 1, 2, . . . , K + 1), and then define µk = cos(θk).

Using a finite differences algorithm (upwind scheme), the discretized problem reads for
(p, k, n) ∈ [2, P ]× [1, K + 1]× [1, N ]:

ε
u(p,k,n+1)
ε − u(p,k,n)

ε

∆t
+ µkv

u(p,k,n)
ε − u(p−1,k,n)

ε

∆x
=

σ(xi)

ε

(

1

2

K+1
∑

k′=1

αk′u
(p,k′,n)
ε − u(p,k,n)

ε

)

if µk ≥ 0

ε
u(p,k,n+1)
ε − u(p,k,n)

ε

∆t
+ µkv

u(p+1,k,n)
ε − u(p,k,n)

ε

∆x
=

σ(xi)

ε

(

1

2

K+1
∑

k′=1

αk′u
(p,k′,n)
ε − u(p,k,n)

ε

)

if µk ≤ 0

u(1,k,n)
ε = u0(µk, tn) if µk ≥ 0 ; u(P+1,k,n)

ε = uL(µk, tn) if µk ≤ 0 ; u(p,k,1)
ε = uI(xp).

(10)
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∆t and ∆x denote time and space steps respectively, whereas coefficients αk′ are de-
fined from a numerical integration of the scattering operator (using the trapeze method
for instance). ∆t and ∆x should be chosen so that the Courant-Friedrichs-Lewy (CFL)
condition is verified [16,17]. In our 1D case, it reads:

∆t <
ε

v
∆x.

3. The surrogate model

3.1. Diffusive limit for the transport equation

For media which have a large size compared to the characteristic lengths of the transport
equation (mean free path of a neutron), we can obtain an approximate solution of the
transport equation by means of a diffusion equation whose coefficients are derived from
those of the transport equation. This is the diffusion approximation [25,34], in which the
unknown is usually the neutron density ρ. Note that the information about the direction
n of the neutrons velocity is lost in this approximation.
The diffusion approximation is discussed for the neutron transport in [2] and a prob-

abilistic approach of the diffusion approximation is developed in [9]. Besides, in [5], an
interpretation of the diffusion approximation is given in terms of an asymptotic behav-
ior of the solution, when time goes to infinity. The physical background for the diffusion
approximation is that when the scattering phenomena dominate the streaming effects,
the motion of the particles in the medium is almost brownian, and can be modeled by a
parabolic equation.

Let us recall that mathematically speaking, one introduces the scaling parameter ε,
which leads (in the 1D case) to the scaled system (7). Denoting the neutron density
ρε(x, t) =

∫ 1
−1 uε(x, µ, t) dµ and the (rescaled) neutron current jε(x, t) =

1
ε

∫ 1
−1 µv uε(x, µ, t) dµ

(as in (1), (2) but dropping the dependence w.r.t. E), the two following equations can be
deduced from (7):

∂ρε
∂t

+
∂jε
∂x

= 0
(

obtained from
1

ε

∫ 1

−1
• dµ

)

ε2
∂jε
∂t

+ v
∂

∂x

∫ 1

−1
µ2 uε(x, µ, t) dµ+ σ(x)jε = 0

(

obtained from
∫ 1

−1
•µdµ

)

,
(11)

where • stands for the 1D transport equation. Combining equations in (11), we get:

∂ρε
∂t

− ∂

∂x

[

1

σ(x)

(

ε2
∂jε
∂t

+ v
∂

∂x

∫ 1

−1
µ2 uε(x, µ, t) dµ

)]

= 0. (12)

When the parameter ε is sufficiently small, the neutron angular density uε(x, µ, t) (and
consequently ρε(x, t)) is correctly approximated by the solution û(x, t) of the following
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heat equation (see [34,18]):

∂û

∂t
− ∂

∂x

[

2

3Σ(x)

∂û

∂x

]

= 0, (13)

which can be obtained by assuming that uε does not depend on µ when ε → 0, and is
called the diffusive limit. It is associated with the initial condition:

û(x, 0) = uI(x) (14)

and boundary conditions which are investigated in next section.

Remark 1 In [18] (and [19] in the case of the Fokker-Planck equation), a general diffusive
limit for transport equations is given; it reads:

∂û

∂t
− ∂

∂xi

(aij
∂û

∂xj

) = 0 ; û(x, 0) = uI(x) (15)

where diffusion coefficients aij(x), that define a symmetric positive definite matrix, are
derived from properties of scattering operator S.

3.2. Boundary conditions for the diffusion model

3.2.1. Dirichlet boundary conditions

In [18], it is shown that if the boundary conditions for the transport equation are

uε(x,n, t) = 0, ∀(x,n) ∈ Γ− (16)

then the diffusive limit solution û, associated with the Dirichlet condition:

û(x, t) = 0, ∀x ∈ ∂X (17)

and initial datum uI ∈ L∞ satisfies:

‖uε(x,n, t)− û(x, t)‖L∞(X×Ω) ≤ eδtCuI
ε (18)

for some δ > 0, where CuI
depends on uI only. This shows that an order 1 convergence is

ensured using Dirichlet boundary conditions for the diffusion model.

3.2.2. Mixed (Robin) boundary conditions

A more accurate, order 2, approximation of the transport model is provided by the
use of Robin boundary conditions for the diffusion equation [18]. These mixed boundary
conditions take into account the fact that when applying homogeneous Dirichlet boundary
conditions (on the microscale transport model), the neutron density actually goes to zero
at some distance from the outer boundary of the macroscale diffusion model. The distance
d at which it drops off to zero is called the extrapolation length [19]; it is related to the
mean free path λ by a coefficient Λ (d = Λλ).
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In [18], it is shown that if uε(x,n) is the solution of the stationary problem:

n ·∇xuε +
1

ε
ΣSuε = 0 ; uε(x,n) = 0 ∀(x,n) ∈ Γ−, (19)

and û(x) is the solution of (with notations of Remark 1):

∂

∂xi

(aij
∂û

∂xj

) = 0 ; û+ ε
Λ

Σ
νx ·∇xû = 0 on ∂X, (20)

then for all p ≥ 1:

‖ρε(x)− ρ̂(x)‖Lp(X) ≤ Cpε
2 (21)

where Cp depends on p only.

The computation of Λ at point x on ∂X uses the solution of a conservative Milne
problem, which is a stationary problem defined in a semi-infinite domain (cf. [18]). For
the 1D transport model we consider, the value of Λ reads:

Λ =

√
3

2

∫ 1

0
µ2H(µ)dµ ≈ 0, 7104 (22)

where H is the Chandrasekhar function [15].

3.3. Coupling between transport and diffusion models

When simulating transport models, a classical model reduction method consists in re-
placing the transport equation by the diffusion equation in parts of the domain where
this latter equation is relevant. Note that a close problem (but much more complicated)
involving the Boltzmann and Navier-Stokes equations was studied in [10,53].

Here, we introduce the diffusive limit model in order to obtain a surrogate model of
the transport model, as in [57,58]. We consider the 1D problem (7) of infinite strip with
isotropic collision operator. The domain X =]0, L[ is divided into two parts Xt =]0, a[ and
Xd =]a, L[ (0 < a < L). Assuming that in Xt the diffusion theory gives a poor approxi-
mation of the neutron density, the proposed method consists of coupling two models: (i)
the transport model used in Xt; (ii) its diffusion approximation used in Xd.

The coupled problem, with Dirichlet boundary conditions for the diffusion model, thus
reads: find the solution pair (ũε, û), where ũε(x, µ, t) (resp. û(x, t)) is defined in Xt (resp.
Xd), such that:
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ε
∂ũε

∂t
+ µv

∂ũε

∂x
= −1

ε
σSũε in Xt × [−1, 1]× [0, T ],

ũε(x, µ, 0) = uI(x) ∀(x, µ) ∈ Xt × [−1, 1],

ũε(0, µ, t) = u0(µ, t) ∀µ ≥ 0 ; ũε(a, µ, t) = û(a, t) ∀µ ≤ 0;

——

∂û

∂t
− ∂

∂x

(

2

3Σ(x)

∂û

∂x

)

= 0 in Xd × [0, T ],

û(x, 0) = uI(x) ∀x ∈ Xd,

û(a, t) = 2
∫ 1

0
ũε(a, µ

′, t)µ′dµ′ ; û(L, t) = 2
∫ 0

−1
uL(µ

′, t)|µ′|dµ′.

(23)

Remark 2 For small mean free paths, the diffusion theory may still fail near the boundary.
In this case we only need to take Xt of diameter a few mean free paths away from the
boundary; therefore, we need only solve the transport equation in a small domain Xt.

Remark 3 Other couplings could be investigated, such as volume couplings in which the
concurrent models overlap (see [8] for instance).

Remark 4 To solve the coupled problem (23) using implicit time schemes, the transmission
time marching algorithm can be applied; it considers the following coupling at x = a (for
n ∈ [1, N ]):

ũ(n+1)
ε (a, µ) = û(n+1)(a) ∀µ ≤ 0 ; û(n+1)(a) = 2

∫ 1

0
ũ(n)
ε (a, µ′)µ′dµ′. (24)

It is proved in [58] that this algorithm converges for 0 < a < L, independently of ε.

Remark 5 When using mixed boundary conditions for the diffusion model, the following
conditions should be considered:

û(a, t)− Λ(a)ε

Σ(a)

∂û

∂x
(a, t) = 2

∫ 1

0
ũε(a, µ

′, t)µ′dµ′

û(L, t) +
Λ(L)ε

Σ(L)

∂û

∂x
(L, t) = 2

∫ 0

−1
uL(µ

′, t)|µ′|dµ′

(25)

which results in the new relation in the transmission time marching algorithm:

û(n+1)(a)− Λ(a)ε

Σ(a)

∂û(n+1)

∂x
(a) = 2

∫ 1

0
ũ(n)
ε (a, µ′)µ′dµ′. (26)

The model coupling transport and diffusion equations is denoted as the surrogate model
in the following. It can be written under the weak form:

find (ũε, û) ∈ L∞ such that B0((ũε, û), (w̃ε, ŵ)) = F0(w̃ε, ŵ) ∀(w̃ε, ŵ) ∈ Wc, (27)
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where

Wc = {(w̃, ŵ) ∈ D([0, L]× [−1, 1]× [0, T [)×D([0, L]× [0, T [)

s.t. ŵ(a, t) = ŵ(L, t) = 0,

w̃(0, µ, t) = 0 when µ ≤ 0,

w̃(a, µ, t) = 0 when µ ≥ 0},

B0((ũε, û), (w̃ε, ŵ)) =
∫ T

0

∫

Xt

∫ 1

−1
ũε(x, µ, t) {−ε∂t − µ v∂x +

1

ε
σ S}w̃ε(x, µ, t)dxdµdt

+
∫ T

0

∫

Xd

û(x, t) {−∂tŵ − ∂x(
3

2Σ(x)
∂xŵ)}(x, t)dxdt

+
∫ T

0

3

2Σ(a)
∂xŵ(a, t) 2

∫ 1

0
ũε(a, µ

′, t)µ′ dµ′dt

+
∫ T

0

∫ 0

−1
µ w̃ε(a, µ, t) û(a, t) dµdt,

F0(w̃ε, ŵ) =
∫ 1

−1

∫

Xt

uI(x)w̃ε(x, µ, 0)dxdµ+
∫

Xd

uI(x)ŵ(x, 0)dx

+
∫ T

0

∫ 1

0
µ w̃ε(0, µ, t) u0(µ, t) dµdt

+
∫ T

0

3

2Σ(L)
∂xŵ(L, t) 2

∫ 0

−1
uL(µ

′, t) |µ′| dµ′dt

(28)
if Dirichlet boundary conditions CD are applied to the diffusion model.

4. Modeling error estimation and model adaptation

In this section, we introduce the methodology used to assess discretization and modeling
errors that occur in numerical simulations. In our case, it will specifically be used to control
the quality of the surrogate model that couples transport and diffusion equations. The
error estimates and adaptive control procedures that it enables to derive are targeted to
specific quantities of interest and are thus referred to as goal-oriented. The development of
such numerical tools has been the object of numerous works in recent years [42,43,47,4,48].

4.1. Definition of the error on a quantity of interest

We recall that the reference 1D transport problem (cf. (9)) reads:

Find uε ∈ L∞ such that B(uε, wε) = F (wε) ∀wε ∈ W. (29)

We are interested in a specific feature of the solution uε, i.e. a linear quantity of interest
denoted Q(uε). The functional Q can be written under the generic form:
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Q(uε) =
∫ T

0

∫ 1

−1

∫ L

0
g(x, µ, t) uε(x, µ, t)dxdµdt, (30)

where g is a distribution called the extraction function or extractor.

In practical cases, the reference problem is intractable and we are led to consider a
coupled problem (cf. (27)) that reads:

Find u0 ∈ U0 ⊂ L∞ such that B0(u0, w0) = F0(w0) ∀w0 ∈ W0 ⊂ W (31)

with u0(x, µ, t) = ũε(x, µ, t) in Xt and u0(x, µ, t) = û(x, t) in Xd.

The modeling error in the quantity of interest Q that we aim to assess thus reads:

Emod = Q(uε)−Q(u0). (32)

Remark 6 In practice, the numerical simulations enable to compute an approximate solu-
tion uh

0 of u0 only; we can thus define the total error on Q:

E = Q(uε)−Q(uh
0) = [Q(uε)−Q(u0)] + [Q(u0)−Q(uh

0)] = Emod + Edis (33)

where Emod (resp. Edis) is the error on Q due to modeling (resp. due to discretization).

4.2. Adjoint problem and goal-oriented error estimation

In [6], an optimal control approach is proposed in order to deal with errors on Q; it is
based on a constrained minimization framework and leads to an adjoint problem of the
form:

Find pε ∈ W such that B′(uε;wε, pε) = Q′(uε;wε) ∀wε ∈ W, (34)

where B′ and Q′ are Gâteaux-derivatives of B and Q, respectively. The solution pε, seen
as an influence function, depends on the quantity of interest. In our case, B and Q are
respectively bilinear and linear functionals so that the adjoint problem reduces to:

Find pε ∈ W such that B(wε, pε) = Q(wε) ∀wε ∈ W. (35)

Remark 7 Physically speaking, adjoint problem (35) is a transport problem similar to (7),
except that it is reverse in time (with zero final conditions), has homogeneous entering
boundary conditions, and is loaded by a source term represented by the extrator g. It reads
in its strong form:

(

− ε
∂pε
∂t

− µv
∂pε
∂x

+
1

ε
σSpε

)

(x, µ, t) = g(x, µ, t) ∀(x, µ, t) ∈]0, L[×[−1, 1]× [0, T ],

pε(0, µ, t) = 0 ∀µ ≤ 0 ; pε(L, µ, t) = 0 ∀µ ≥ 0 ; pε(x, µ, T ) = 0
(36)

and can be discretized in a way similar to (10).
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Remark 8 When considering a quantity of interest in a time domain prior to t0 < T , the
adjoint problem needs to be solved on [0, t0] only (the adjoint solution for t > t0 is zero).

Again, the adjoint problem is usually not tractable and needs to be replaced by a coupled
problem of the form:

Find p0 ∈ W̄0 such that B̄0(w0, p0) = Q(w0) ∀w0 ∈ W̄0 (37)

where B̄0 and V̄0 are similar to B0 and V0 except that domain Xt in which the transport
model is conserved is taken a bit larger. In practice, the interface between the concurent
coupled models is placed at x = ā := a+∆a, with ∆a > 0.

We can now define the following residual functionals, associated with reference and
adjoint problems respectively:

R(u0, w) := F (w)− B(u0, w) ∀w ∈ W,

R̄(p0, w) := Q(w)− B(w, p0) ∀w ∈ W.
(38)

They represent the degree to which u0 and p0 fail to satisfy the reference and adjoint
problems (29) and (35).

In [43], a general relation is established between the modeling error in the quantity of
interest and the residual functionals. In our case, it merely reads:

Emod = Q(uε)−Q(u0) = R(u0, pε) = R(u0, p0) +R(u0, ǫ0), (39)

where ǫ0 = pε − p0 is the error on the adjoint solution. Assuming that this error is small,
a good estimate of the modeling error on the quantity of interest is:

Emod ≈ R(u0, p0). (40)

Remark 9 A more accurate error estimate would consist in assessing ǫ0 using a global
error estimate; however, this procedure is problem-dependent and more costly.

Remark 10 When taking discretization error Edis into account, other estimates can be set
up:
– First, an estimate of the total error on the quantity of interest reads:

E ≈ R(uh
0 , p

h
0), (41)

where uh
0 and ph0 are computed solutions obtained after discretizations of coupled ref-

erence and adjoint problems.
– Second, if one wants to assess the discretization error only, a good estimate is:

Edis ≈ R0(u
h
0 , p

h
0) := F0(p

h
0)−B0(u

h
0 , p

h
0), (42)

i.e. an estimate defined taking the coupled problem (31) as the reference.
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Let us notice that only estimates (41) and (42) are actually computable. Therefore, a
relevant error estimation process consists in first assessing the discretization error Edis
and checking that it is small in order to use the estimate Emod ≈ E ≈ R(uh

0 , p
h
0).

4.3. Goal-oriented model adaptation

When using a surrogate model, such as the one presented in the previous section and
based on a coupling between transport and diffusion models, it is fundamental to be able
to adapt this surrogate model if need be. In our case, assuming that the discretization
error can be neglected, the adaptation of the surrogate model consists in enlarging the
region Xt in which the transport model lies, up to obtaining a sufficiently accurate value
for the quantity Q.
Therefore, we come up with an adaptive greedy algorithm that aims at controling the

modeling error Emod within some preset error tolerance γtol. This is generally achieved
by generating a sequence of surrogate problems with solutions (uk

0, p
k
0) so that for some

integer k0, the modeling error satisfies:

∣

∣

∣Q(uε)−Q(uk0
0 )
∣

∣

∣ ≤ γtol. (43)

At each iteration, the goal is to reduce the global quantity R(u0, p0) by locally enriching
the surrogate model, i.e. by locally switching on the transport model in the subregions
where the diffusion model is not accurate enough. This is possible by observing that the
residual term R(u0, p0) is defined globally over the whole domain and can be decomposed
into local contributions ηc defined over predefined subdomains (generally finite elements
of the mesh used to discretize the diffusion model in space). Finally, prescribing a user-
defined parameter γa such that 0 < γa < 1, the subdomains with contributions ηc can be
switched from the diffusion model to the transport model whenever ηc > γamaxc ηc.

The proposed greedy algorithm for adaptation of the surrogate model, denoted Goals
Algorithm, reads as follows:

13



1. Specify the error tolerance for the quantity of interest γtol and refinement
parameter γa.

2. Solve the primal surrogate problem for u0.

3. Solve the adjoint surrogate problem for p0.

4. Compute ηest = R(u0, p0). If
∣

∣

∣

∣

ηest

Q(u0)

∣

∣

∣

∣

< γtol,

then stop. Otherwise, continue to step 5.

5. Decompose the residual term R(u0, p0) into contributions ηc over predefined
subdomains (can be chosen as the elements for the discretization of the diffusion
model).

6. Switch subdomain with contribution ηc to transport model if ηc > γa maxc ηc,
and go to step 2.

Figure 1. Greedy algorithm for goal-oriented error estimation and control of modeling error.

Remark 11 An optimized adaptive approach would consist in splitting the estimateR(u0, p0)
into contributions over each finite element and each time step, so that the coupled model
can be adapted both in space and time. However, this procedure is technically more complex
to set up.

5. Numerical results

In all the following numerical experiments, we consider 1D transport problems with
constant velocity modulus v = 1 and isotropic scattering, defined over a time-space domain
]0, L[×[0, T ] with L = 5 and T = 4. We take zero initial conditions (uI(x) = 0) and
prescribe for all t ∈ [0, T ] the following entering boundary conditions:

u0(µ, t) = 1 ∀µ ≥ 0 ; uL(µ, t) = 0 ∀µ ≤ 0. (44)

Scaling parameter is fixed to ε = 5.10−2, and we consider a piecewise linear evolution for
Σ(x) (see Fig.2):
• Σ(x) = ε for x ∈ [0, 2];
• Σ(x) evolves linearly from ε to 1 for x ∈ [2, 3];
• Σ(x) = 1 for x ∈ [3, 5].

Therefore, Σ/ε = 1 in the transparent part of the domain, and we intend that the
diffusion model is valid in the left-hand side of the domain.
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Figure 2. Evolution of the scattering cross section Σ over the space domain.

The discretizations of transport and diffusion models are performed the following way:
– for the transport model (x ∈ Xt), we use the finite differences scheme defined in (10);
– for the diffusion model (x ∈ Xd), we use a classical finite elements method associated
with a forward Euler scheme in time.

Even though, in practical applications, larger time steps ∆t and space steps ∆x should
be used for the discretization of the diffusion model, we use here the same values as for
the discretization of the transport model. For this last model, the CFL condition reads
(v = 1):

∆t < ε∆x. (45)

Furthermore, in order to represent the scattering phenomenon correctly, the time step
should verify:

∆t ≪ ε2

σ
(46)

and as regards the diffusion model, the stability condition reads:

∆t <
Σ∆x2

2
. (47)

In the following, we thus choose ∆x = 0.1 and ∆t = 10−5.

For the neutron transport problem we study, interesting quantities of interest may be
the neutron density ρε or the neutron flux jε; we thus consider these two quantities of
interest at a given space-time point (xQ, tQ) ∈]0, L[×[0, T ]:

Q1(uε) =
∫ 1
−1 uε(xQ, µ, tQ)dµ ; Q2(uε) =

1

ε

∫ 1

−1
µuε(xQ, µ, tQ)dµ, (48)
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which leads to extractors g1(x, µ, t) = δxQ
(x)δtQ(t) and g2(x, µ, t) =

µ

ε
δxQ

(x)δtQ(t), respec-

tively. The Dirac loading which is involved is in practice approximated with a pointwise
force f = 1/(∆t∆x) located at node nQ and time tQ. In the following, we take xQ = 1.5
and tQ = 3.8.

5.1. Results with the linearized Carleman model

For practical reasons regarding clarity of the parametric studies and understanding of
the displayed results by the reader, we first apply the error estimation methodology to a
simplified one-dimensional model of (7), denoted as the linearized Carleman model [51].
This model, in which µ = ±1, simulates the collision between two neutron populations
evoluting in inverse directions. The associated phase space densities are denoted u+(x, t)
and u−(x, t), respectively. The scaled problem, which describes a random walk in 1D,
consists of finding u+

ε (x, t) and u−

ε (x, t) such that:

ε
∂u+

ε

∂t
+

∂u+
ε

∂x
=

σ(x)

2ε
(u−

ε − u+
ε ) ; ε

∂u−

ε

∂t
− ∂u−

ε

∂x
=

σ(x)

2ε
(u+

ε − u−

ε )

u+
ε (0, t) = u0(t) ; u−

ε (L, t) = uL(t) ; u±

ε (x, 0) = uI(x)
(49)

This system, also known as the Goldstein-Taylor model [29], can be reduced to a damped
wave equation i.e. the telegrapher’s equation [39].

5.1.1. Exact and approximate solutions

We represent in Fig. 3 the (quasi-)exact solution of problem (49), computed with an
overkill discretization, in the space-time domain; in practice, this solution would be un-
known. The associated values (taken as reference) of the quantities of interest are Q1 =
1.8398 and Q2 = 1.2814.
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Figure 3. Exact solution of the linearized Carleman model in the space-time domain: u−

ε (top left), u+
ε (top right), ρε

(bottom left), jε (bottom right).

The diffusive limit for the linearized Carleman model reads:

∂û

∂t
− ∂

∂x

[

1

Σ(x)

∂û

∂x

]

= 0. (50)

In this diffusive limit, the neutron current jε is of order ε, so that we can use the ap-
proximation u+

ε = u−

ε = ρε/2. Furthermore, the extrapolation length Λ is here equal to
1.
We show in Fig. 4 the approximate solution (density and flux) obtained with the

transport-diffusion coupled model, with three different positions a ∈ [0, L] of the interface
i.e. a = 1.0, a = 2.0 and a = 3.0. We use mixed boundary conditions for the diffusion
model here.
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Figure 4. Approximate solution of the linearized Carleman model in the space-time domain, for a = 1 (left), a = 2.0 (center),
a = 3.0 (right): density ρ0 (top), flux j0 (bottom).

We clearly observe that the solution is corrupted when the interface is placed in (or
close) to the transparent zone. The associated approximate values of quantities of interest
Q1 and Q2 are given in Tab. 1.

a Q1 error on Q1(%) Q2 error on Q2(%)

1.0 1.8967 3.09 0.0000 100.00

2.0 1.9295 4.88 0.5621 56.13

3.0 1.8693 1.60 1.0435 18.57

Table 1
Values of Q1 and Q2 with respect to the position of the interface between transport and diffusion models.

5.1.2. Error estimation

We now use the error estimation strategy introduced in Section 4 in order to adapt
the model up to a given level. We give in Fig. 5 (resp. Fig. 6) the approximate solutions
(density and flux) of the adjoint problems associated to Q1 (resp. Q2), for an interface
placed at ã = 2.5.
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Figure 5. Approximate adjoint solution, in the space-time domain, for Q1: p
−

0
(left), p+

0
(right).

Figure 6. Approximate adjoint solution, in the space-time domain, for Q2: p
−

0
(left), p+

0
(right).

We observe that these solutions are very localized in space and time, and have high
gradient near the coordinates where quantities of interest are computed.

Before computing a modeling error estimate, we check that the discretization error
remains neglectable. In the case a = 2.0, we compute for Q1 the discretization error
estimate defined in Section 4.2. The representation of this estimate in the space-time
domain is shown in Fig.7. We observe that the discretization error is concentrated in the
area of point (xQ,tQ), and expends a little bit around that point.
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Figure 7. Contributions in space and time to the discretization error for Q1.

The value of the relative global discretization error estimate for Q1 is 0.61%, which is
small compared to the total error on Q1 (4.88%) given in Tab. 1. This confirms that the
discretization we consider is accurate enough to address the issue of modeling error.

Still considering an approximate solution with a = 2.0, we now compute the estimate
R(u0, p0) associated to Q1 for various positions ã of the interface in the adjoint coupling
problem. Results are reported In Tab. 2.

ã 2.0 2.2 2.4 2.6 2.8 3.0

estimate (%) 1.27 4.29 4.87 5.03 5.03 5.03

Table 2
Values of error estimate for Q1, with respect to the position ã of the adjoint interface.

We observe that the estimate converges very rapidly, and that extending the transport
domain, for the coupled adjoint problem, beyond ã = 2.6 does not change the value of the
estimate. Therefore, in all the following computations, we will consider ã = a+ 0.5.

5.1.3. Model adaptation

We now use the Goals algorithm presented in Section 4.3 in order to drive the goal-
oriented model adaptation with respect to Q1 or Q2. In both cases, we start from an initial
position a = 1.6 for the interface, and specify error tolerance γtol = 3% and refinement
parameter γa = 0.2. To illustrate the adaptation process, we plot in Fig. 8 contributions
of residual R(u0, p0), associated to Q1 and for a = 2, over each subdomain in the physical
space.
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Figure 8. Spatial contributions of the residual for a = 2.

We give in Tab. 3 (resp. Tab. 4) the obtained approximate values of Q1 (resp. Q2)
along iterations of the adaptive algorithm, considering either Dirichlet or mixed boundary
conditions for the diffusion model.

Dirichlet BC Mixed BC

iteration ♯ a Q1 estimate (%) iteration ♯ a Q1 estimate (%)

0 1.6 2.0827 15.25 0 1.6 1.9767 7.69

1 1.9 1.9701 7.34 1 1.8 1.9426 5.81

2 2.2 1.9366 5.43 2 2.0 1.9295 4.99

3 2.4 1.9011 3.49 3 2.1 1.8877 2.73

4 2.5 1.8934 2.91

Table 3
Values of a, Q1, and error estimate on Q1 for each iteration of the Goals algorithm.
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Dirichlet BC Mixed BC

iteration ♯ a Q2 estimate (%) iteration ♯ a Q2 estimate (%)

0 1.6 0.3239 80.01 0 1.6 0.2734 80.81

1 1.9 0.4957 64.88 1 2.0 0.5621 59.11

2 2.3 0.6860 49.13 2 2.4 0.7311 43.29

3 2.7 0.8791 33.40 3 2.9 1.0396 19.86

4 3.3 1.0844 16.09 4 3.2 1.1794 8.22

5 3.5 1.1797 8.29 5 3.5 1.2319 4.19

6 3.6 1.1923 7.17 6 3.6 1.2492 2.91

7 3.7 1.2104 5.74

8 3.8 1.2232 4.81

9 4.0 1.2516 2.66

Table 4
Values of a, Q2, and error estimate on Q2 for each iteration of the Goals algorithm.

5.2. Results with 1D neutron transport problem

We consider now the reference model presented in Section 2.2. We represent in Fig. 9
the (quasi-)exact solution of this problem, computed with an overkill discretization, in the
space-time domain. The associated values (taken as reference) of the quantities of interest
are Q1 = 1.7997 and Q2 = 0.6020.
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Figure 9. Exact solution of 1D neutron transport model in the space-time domain: neutron density in the phase space uε

(top) for µ = −1, µ = 0, and µ = 1 (from left to right), density ρε (bottom left), flux jε (bottom right).

Starting again from an initial position a = 1.6 for the interface, and specifying error
tolerance γtol = 3% and refinement parameter γa = 0.2, we perform the modeling adap-
tation. We give in Tab. 5 (resp. Tab. 6) the obtained approximate values of Q1 (resp. Q2)
along iterations of the adaptive algorithm, considering either Dirichlet or mixed boundary
conditions for the diffusion model.

Dirichlet BC Mixed BC

iteration ♯ a Q1 estimate (%) iteration ♯ a Q1 estimate (%)

0 1.6 2.1244 20.04 0 1.6 2.0329 13.77

1 1.8 2.0133 12.66 1 1.8 1.9502 10.06

2 2.0 1.9124 7.02 2 1.9 1.8663 4.12

3 2.1 1.8377 2.51 3 2.0 1.8111 1.22

Table 5
Values of a, Q1, and error estimate on Q1 for each iteration of the Goals algorithm.
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Dirichlet BC Mixed BC

iteration ♯ a Q2 estimate (%) iteration ♯ a Q2 estimate (%)

0 1.6 0.2044 68.61 0 1.6 0.3626 42.40

1 2.0 0.4678 24.19 1 1.8 0.5711 6.49

2 2.2 0.5432 10.54 2 2.1 0.5799 4.28

3 2.4 0.5571 7.98 3 2.2 0.5859 3.04

4 2.6 0.5709 5.77 4 2.3 0.5905 2.42

5 2.7 0.5823 3.99 5

6 2.8 0.5888 2.71 6

Table 6
Values of a, Q2, and error estimate on Q2 for each iteration of the Goals algorithm.

5.3. Results with the generalized Carleman model

Finally, we apply our method for modeling error estimation and model adaptation to the
nonlinear generalized Carleman model. This model, that takes saturation effects into ac-
count, involves a collision frequency that is proportional to some power of the macroscopic
density ρε = u+

ε + u−

ε . It reads (for v = 1):

ε
∂u+

ε

∂t
+

∂u+
ε

∂x
=

1

ε
ραε (u

−

ε − u+
ε ) ; ε

∂u−

ε

∂t
− ∂u−

ε

∂x
=

1

ε
ραε (u

+
ε − u−

ε )

u+
ε (0, t) = u0(t) ; u−

ε (L, t) = uL(t) ; u±

ε (x, 0) = uI(x)
(51)

System (51) has been studied by several authors using variety of analytical techniques
[32,52,38,31]. Assuming sufficient regularity on the initial data uI , uniqueness of the so-
lution has been addressed in [37].

in [30], it was shown that the diffusive limit for the generalized Carleman model is
governed by the nonlinear diffusion equation:

∂tρ̂ =
1

2
∂xx(

ρ̂1−α

1− α
) =

1

2
∂x(

1

ρ̂α
∂xρ̂) (52)

for α ∈ [−1, 1[, while the case α = 1 leads to ∂tρ̂ = 1
2
∂xx ln ρ̂. This diffusive limit can be

viewed as the Navier-Stokes equation of a ficticious gas.

Remark 12 The justification of the limit process for different choices of α has been ad-
dressed in [37,49,50]. It was particularly shown that the solution ρ̂ is not unique in the
range α ∈ [1, 2]. In that case, the limit is the unique maximal solution which conserves
the mass.
In the following, we take α = 0.5. We represent in Fig. 10 the (quasi-)exact solution of

problem (51) computed with an overkill discretization. The associated values (taken as
reference) of the quantities of interest are Q1 = 0.9789 and Q2 = 0.5692.
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Figure 10. Exact solution of the generalized Carleman model in the space-time domain: u−

ε (top left), u+
ε (top right), ρε

(bottom left), jε (bottom right).

We then solve the surrogate model obtained by coupling transport and diffusion models,
and we perform the modeling adaptation using the same parameters as in previous sec-
tions. Let us notice that the adjoint problem considers here linearized (tangent) operators
of the generalized Carleman model. We give in Tab. 7 (resp. Tab. 8) the obtained ap-
proximate values of Q1 (resp. Q2) along iterations of the adaptive algorithm, considering
either Dirichlet or mixed boundary conditions for the diffusion model.
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Dirichlet BC Mixed BC

iteration ♯ a Q1 estimate (%) iteration ♯ a Q1 estimate (%)

0 1.6 1.2113 25.72 0 1.6 1.1349 17.12

1 1.8 1.0901 12.80 1 1.8 1.0490 8.68

2 2.0 1.0655 9.39 2 2.0 0.9935 2.16

3 2.2 1.0323 6.36

4 2.3 1.0021 2.88

Table 7
Values of a, Q1, and error estimate on Q1 for each iteration of the Goals algorithm.

Dirichlet BC Mixed BC

iteration ♯ a Q2 estimate (%) iteration ♯ a Q2 estimate (%)

0 1.6 0.3612 38.79 0 1.6 0.4799 18.33

1 1.8 0.4398 24.29 1 1.7 0.5180 10.17

2 2.1 0.4821 16.33 2 1.9 0.5347 7.70

3 2.3 0.5211 9.72 3 2.1 0.5496 4.06

4 2.5 0.5427 5.81 4 2.2 0.5560 2.61

5 2.7 0.5538 2.98

Table 8
Values of a, Q2, and error estimate on Q2 for each iteration of the Goals algorithm.

6. Conclusion

We developed a framework for goal-oriented error estimation and model adaptation
when neutron transport models are solved by means of surrogate models. These last
models, in which the fine transport model is replaced with a coarse diffusion model in
some part of a physical domain, are therefore controlled in order to provide the value of
given quantities of interest with prescribed accuracy. The procedure uses the solution of
an adjoint problem as well as a specific algorithm that drives the adaptive process by
moving the interface between concurrent models accordingly. Numerical experiments on
1D transport models showed performances of the approach and its capabilities to provide
for an optimal surrogate model (in terms of accuracy and computational cost).
In forthcoming works, the technique will be applied to 2D and 3D transport models,

in which speed directions on Ω are fully considered. As the transport problem is multi-
parametric, reduction methods based on separation of variables can be very effective; it
thus will be useful to test the error estimation and modeling adaptation strategy in such
cases.
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