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ABSTRACT. The mechanism leading to gas damping in Micro-Electro-Mechanical
Systems (MEMS) devices vibrating at high frequencies is investigated by us-
ing the linearized Boltzmann equation based on the ellipsoidal statistical (ES)
model. Knowing that walls with different physical structures are used in design-
ing micromachines, general boundary conditions of Maxwell’s type have been
considered to describe the gas-wall interactions.
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1. INTRODUCTION

Micro-Electro-Mechanical Systems (MEMS) devices have received growing at-
tention in recent years. This is due not only to the excitement naturally associ-
ated with a nascent technology, but also because of the greatpromise of increased
miniaturization and performance of MEMS devices over conventional systems. In
particular, microstructures vibrating at high frequencies (ranging from1 MHz to
60 GHz) find applications in inertial sensing, acoustic transduction, optical sig-
nal manipulation and RF (radio frequency) components [1, 2,3, 4, 5]. Such high
frequency devices have become a major research area becausethey should enable
a miniaturization and an integration of RF components, withapplications to ultra
low-power wireless and adaptive/secure telecommunications.

In MEMS devices, the fluid is usually trapped under or around the vibrating
micromechanical structure in extremely narrow gaps. As thestructure vibrates, it
pushes and pulls the fluid film creating complex pressure patterns that depend on
the geometry of the structure, the boundary conditions, frequency of oscillations
and thickness of the fluid film. In particular, when a planar microstructure oscillates
in the direction perpendicular to its surface, the forces exerted by the fluid due to
the built-up pressure are always against the movement of thestructure. Thus, the
fluid-film (typically an air-film) acts as a damper and the phenomenon is called
squeeze film damping. Besides the viscous forces that dominate at low frequencies,
gas compressibility and inertial forces determine the amount of damping at higher
oscillation frequencies. Very recently, gas damping in RF MEMS systems has
been studied by using the linearized Navier-Stokes equations with slip boundary
conditions for temperature in [6, 7]. Since the analysis presented in [6, 7] failed
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FIGURE 1. Channel geometry.

to predict the correct value of the damping force due to air ina RF MEMS disk
resonator [1, 2], in the current paper, we investigate the mechanism leading to gas
damping in MEMS devices vibrating at high frequencies within the framework of
kinetic theory of rarefied gas.

2. PROBLEM FORMULATION

Let us consider a monatomic gas confined between two flat, infinite, and parallel
plates located atz′ = −d/2 andz′ = d/2. Both boundaries are held at a constant
temperatureT0. The upper wall of the channel (located atz′ = d/2) is fixed while
the lower one (located atz′ = −d/2) harmonically oscillates in thez′-direction
(normal to the wall itself) with angular frequencyω′ (the corresponding period be-
ing T ′ = 2π/ω′). The basic geometry of the two-dimensional gas layer is outlined
in Fig.1 The velocityU ′

w of the oscillating plate depends on timet′ through the
formula

(1) U ′

w(t
′) = U ′

0 sin(ω
′t′),

where it is assumed that the amplitudeU ′

0 is very small compared to the thermal
velocity v0, i.e.

(2) U ′

0 << v0, v0 =
√

2RT0,

with R being the gas constant andT0 being the equilibrium temperature of the gas.

Under these conditions, the Boltzmann equation modeling the gas motion inside
the channel can be linearized about a Maxwellianf0 by putting [8, 9]

(3) f = f0(1 + h),

wheref(z′, c, t′) is the distribution function for the molecular velocityc expressed
in units ofv0 andh(z′, c, t′) is the small perturbation on the basic equilibrium state.
The above mentioned Maxwellian function is given by

(4) f0 = ρ0π
−

3

2 exp(−c2),
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whereρ0 is the equilibrium density of the gas. Using Eq. (3), the nonstationary
linearized Boltzmann equation reads as

(5)
∂h

∂t′
+ cz

∂h

∂z′
= Lh,

whereLh is the linearized collision operator. Since it is difficult to manage the
Boltzmann operatorL as such, for both analytical computations and numerical
simulations, simplified kinetic models of the exact collision integral are widely
used in practice. Because of its simplicity, the Bhatnagar,Gross and Krook (BGK)
model is one of the most popular of these kinetic models [10],although it is known
to have a serious flaw: it leads to a wrong Prandtl number (i.e.the dimensionless
ratio of viscosity and thermal conductivity). This difficulty can be dealt with when
one works in the linearized framework since viscosity and temperature effects are
then decoupled [11, 12]. However, for the specific problem with which we are
dealing here, where the sound waves generated by the oscillating plate propagate
through the gas across the gap of the channel, both temperature variations and
thermal conductivity must be accounted for due to compressibility effects. Thus,
in order to correctly describe both mass and heat transfer, it is worth investigating
the problem with a more refined model than the BGK. We shall therefore use the
ellipsoidal statistical (ES) model, which allows one to recover the right Prandtl
number [13, 14]. The linearized ES model gives rise to the following collision
operator

(6) Lh = θ̃−1

[

ρ+ 2c · v + τ (c2 − 3/2) − λ ci cj Pij + λ (ρ+ τ) c2/2− h

]

,

whereθ̃ is a suitable mean free time, while the dimensionless macroscopic per-
turbed densityρ, velocity v, temperatureτ and stress tensorPij are obtained by
taking the moments ofh

(7) ρ = π−3/2

∫ +∞

−∞

h e−c2 dc,

(8) v = π−3/2

∫ +∞

−∞

ch e−c
2

dc,

(9) τ = π−3/2

∫ +∞

−∞

(
2

3
c
2 − 1)h e−c2 dc,

(10) Pij = π−3/2

∫ +∞

−∞

ci cj h e
−c2 dc.

In Eq. (6), λ is a constant to be chosen in such a way that the correct Prandtl
number is obtained, that is
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(11) Pr = cp
µ

k
,

wherecp is the specific heat at constant pressure,µ the viscosity andk the thermal
conductivity.λ is equal to0 for the BGK model (Pr = 1) and1 for a Maxwell gas
(Pr = 2/3). For a general monoatomic gas the relation betweenλ andPr is given
by

(12) Pr =
2

2 + λ
,

i.e.,

(13) λ =
2

Pr
− 2.

In order to get the same viscosity coefficient from the BGK model and the present
one, we must put

(14) θ̃ =
(λ+ 2)

2
θ,

whereθ = µ/P0 is the collision time defined in the BGK model (withP0 being
the equilibrium pressure). It is convenient now to rescale all variables appearing in
Eqs. (5) and (6) as follows

(15) t =
t′

θ
, x =

x′

v0θ
, z =

z′

v0θ
,

so that the dimensionless ES linearized equation reads

(16)
∂h

∂t
+ cz

∂h

∂z
=

2

(2 + λ)

[

ρ+ 2c · v + (c2 − 3/2) τ

−λ ci cj Pij + λ c2(ρ+ τ)/2− h

]

.

Appropriate boundary conditions must be supplied for the Boltzmann equation
(16) to be solved. Assuming the diffuse-specular reflectioncondition of Maxwell’s
type and specializing the analysis to symmetric gas-wall interactions (so that an
accommodation coefficientα can be defined), the boundary conditions (under the
assumption (2)) read as [15, 16, 17]

(17) h(z = −δ/2, c, t) = α(
√
π + 2 cz)Uw + (1− α) 4 cz Uw

+(1− α)h(z = −δ/2, cx, cy,−cz, t)

−2α

π

∫

∞

−∞

∫

∞

−∞

dc̃xdc̃y

∫

c̃z<0
dc̃z c̃z e

−c̃2 h(z = −δ/2, c̃, t) cz > 0,

(18) h(z = δ/2, c, t) = (1− α)h(z = δ/2, cx, cy,−cz, t)



A KINETIC APPROACH FOR HIGH-FREQUENCIES MEMS 5

+
2α

π

∫

∞

−∞

∫

∞

−∞

dc̃xdc̃y

∫

c̃z>0
dc̃z c̃z e

−c̃
2

h(z = δ/2, c̃, t)

whereδ = d/(v0θ) is the rarefaction parameter (inverse Knudsen number). In Eq.
(17),Uw is the dimensionless wall velocity given by

(19) Uw(t) = U0 sin(ω t),

with Uw = U ′

w/v0, U0 = U ′

0/v0, ω = θ ω′, T = 2π/ω = T ′/θ.
Since the problem under consideration is one-dimensional in space, the un-

known perturbed distribution functionh, as well as the overall quantities, de-
pend only on thez coordinate. Likewise, we can reduce the dimensionality of
the molecular-velocity space by introducing the followingprojection procedure
[18, 19]. First, we multiply Eq. (16) by1π e−(cx2+cy

2) and we integrate over all
cx and cy. Then, we multiply Eq. (16) for a second time by1π (cx

2 + cy
2 −

1) e−(cx2+cy
2) and we integrate again over allcx andcy. The resulting equations

after the projection are

(20)
∂H

∂t
+ cz

∂H

∂z
+

2

(2 + λ)
H

=
2

(2 + λ)

[

ρ+2 cz vz+(c2z −1/2) τ −λ (c2z −1/2)Pzz +
λ

2
(c2z −1/2)(ρ+ τ)

]

,

and

(21)
∂Ψ

∂t
+ cz

∂Ψ

∂z
+

2

(2 + λ)
Ψ =

2

(2 + λ)

[

τ − λ

4
(ρ+ τ) +

λ

2
Pzz

]

,

where the reduced unknown distribution functionsH andΨ are defined as

(22) H(z, cz , t) =
1

π

∫ +∞

−∞

∫ +∞

−∞

h(z, c, t) e−(c2
x
+c2

y
) dcx dcy,

and

(23) Ψ(z, cz , t) =
1

π

∫ +∞

−∞

∫ +∞

−∞

(c2x + c2y − 1)h(z, c, t) e−(c2
x
+c2

y
) dcx dcy,

respectively. In order to derive Eqs. (20) and (21) in their final form, we have
considered the linearized equation of state

(24) P =
1

3

[

Pxx + Pyy + Pzz

]

=
1

2
(ρ+ τ),

with P being the dimensionless perturbed pressure of the gas. The macroscopic
fields appearing on the right-hand side of Eqs. (20) and (21) are defined by



6 SILVIA LORENZANI AND LAURENT DESVILLETTES

(25) ρ(z, t) =
1√
π

∫ +∞

−∞

H e−c2
z dcz,

(26) vz(z, t) =
1√
π

∫ +∞

−∞

cz H e−c2
z dcz ,

(27) τ(z, t) =
1√
π

∫ +∞

−∞

2

3

[

(c2z − 1/2)H +Ψ

]

e−c2
z dcz,

(28) Pzz(z, t) =
1√
π

∫ +∞

−∞

c2z H e−c2z dcz .

The elimination of one (or more) component of the molecular velocity by a projec-
tion procedure is quite important for the computational efficiency of the numerical
scheme. The reduced distribution functionsH andΨ must satisfy the following
boundary conditions coming from Eqs. (17) and (18)

(29) H(z = −δ/2, cz , t) = α (
√
π + 2 cz)Uw + (1− α) 4 cz Uw

+(1−α)H(z = −δ/2,−cz , t)−2α

∫

c̃z<0
dc̃z c̃z e

−c̃2
z H(z = −δ/2, c̃z , t) ; cz > 0,

(30)
Ψ(z = −δ/2, cz , t) = (1−α)Ψ(z = −δ/2,−cz , t)

(31) H(z = δ/2, cz , t) = (1− α)H(z = δ/2,−cz , t)+

2α

∫

c̃z>0
dc̃z c̃z e

−c̃2z H(z = δ/2, c̃z , t) cz < 0,

(32)
Ψ(z = δ/2, cz , t) = (1−α)Ψ(z = δ/2,−cz , t)

The time-dependent problem described by Eqs. (20) and (21),with boundary con-
ditions given by Eqs. (29)-(32), has been numerically solved by a deterministic
finite-difference method presented in detail in [20, 21]. Inorder to compute the
damping force exerted by the gas on the moving wall of the channel, the perturba-
tion of the normal stressPzz (defined by Eq. (28)) has to be evaluated atz = −δ/2.
Therefore, our numerical code has been validated in [22] by comparing the values
of the amplitude and of the phase ofPzz at the oscillating wall determined by
means of a numerical integration of Eqs. (20) and (21), with the highly accurate
results obtained in [19] from a numerical solution of the linearized Shakhov kinetic
equation, in the case of complete diffuse reemission (α = 1) at the channel walls.
The normal stress time-dependence is of the following knownform:
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(33) |Pzz| sin(ω t+ φ),

where|Pzz| is the amplitude andφ the phase. In general, the amplitude of the time-
dependent macroscopic fields is extracted from our numerical results as half the
vertical distance between a maximum and the nearest minimumappearing in the
temporal evolution of the macroscopic quantity. This corresponds to the definition

(34) |A(z, t)| = [Re(A)2 + Im(A)2]1/2,

whereRe andIm denote the real and imaginary part, respectively, of the field
A(z, t). Instead, the phase can be recovered from our simulations through the
application of a chi-square fit to the functional form of the expression (33) [23, 24].
The good agreement shown by the comparison between our findings and the results
obtained in [19], by using the Shakhov model, reveals not only the reliability of our
numerical method of solution, but also the weak dependence of the normal stress
field (evaluated at the moving channel wall) on the collisional model used.

3. RESULTS AND DISCUSSION

Low frequency MEMS devices are normally operated at very lowpressure in
order to minimize the damping due to the internal friction ofthe gas flowing in the
small gaps between the moving parts of these microstructures (viscous damping).
This need can be overcome when MEMS devices vibrate at relatively high fre-
quencies, since gas compressibility and inertial forces lead then to another damp-
ing mechanism related to the occurrence of sound wave resonances which take
place in the direction normal to the channel walls. Corresponding to a resonant
response of the system, the amplitude ofPzz at z = −δ/2 reaches its maximum
value (resonance) or its minimum value (antiresonance). The occurrence of an
antiresonance is particularly important since if the device is operated close to the
corresponding frequency, the damping due to the gas (measured by the amplitude
of Pzz(z = −δ/2, t)) is considerably reduced. In the case of complete diffuse
reemission (α = 1), we found a scaling law (valid for all Knudsen numbers) that
predicts a resonant response of the system when the dimensionless distance be-
tween the channel walls (measured in units of the oscillation period of the moving
plate)

(35) L =
δ

T
=

dω′

2π v0

takes a well-defined fixed value. Note that the quantity(2π v0/ω
′) is the dis-

tance traveled by gaseous molecules during one cycle of oscillation of the moving
boundary. In [22], the values ofL corresponding to the main resonances have been
analytically derived forα = 1:

La ≃ 0.21 (antiresonance)
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FIGURE 2. Amplitude of the normal stress tensorPzz at the os-
cillating wall versusT for different values of the rarefaction pa-
rameterδ. In each panel, the three plots correspond to the follow-
ing values of the accommodation coefficientα: α = 1 (circles),
α = 0.5 (squares),α = 0.1 (triangles).

Lr ≃ 0.48 (resonance).

Once these approximated fixed values,La andLr, have been determined, Eq. (35)
allows one to compute the values ofT for the occurrence of resonances and antires-
onances for different values of the rarefaction parameterδ progressing from free
molecular, through transitional, to continuum regions (since the ratioL = δ/T
must assume always the same constant value each time the system undergoes a
resonant response).

It is worth noting that the double degenerate geometry considered here, that is,
infinitely long and wide channels, does not affect in any way the results obtained,
since the numerical simulations carried out in [22] have shown that, above a certain
frequency of oscillation, the sound wave propagation takesplace only in thez-
direction across the gap. This fully trapped gas situation greatly simplifies the
analysis since the topology of the damper becomes insignificant and the problem
can be reduced to a1-dimensional one.

A change in the boundary conditions, obtained by assumingα 6= 1, breaks the
scaling law as expressed by Eq. (35). This is clearly shown inFig. 2, where
the profiles of the normal stress amplitude at the oscillating wall are plotted as a
function of the periodT , for three different values of the rarefaction parameterδ
and of the accommodation coefficientα. While the location of the main resonance
(resp. antiresonance) which corresponds to the highest maximum (resp. lowest
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minimum) remains almost unchanged in the near-continuum flow limit (δ = 10)
by varyingα, the influence of the accommodation coefficient becomes evident in
the transitional region (δ = 1) and in the near free-molecular flow limit (δ = 0.1).
As α decreases, the location of the resonances (antiresonances) moves towards
smaller values ofT for δ = 1 andδ = 0.1. This means that, for each givenα 6= 1,
the dimensionless distance between the channel walls,L, defined by Eq. (35), does
not assume a fixed constant value any longer.

Furthermore, even if the value of|Pzz(z = −δ/2)| corresponding to the main
resonant and antiresonant frequencies is a nonmonotonic function ofα, at a fixed
δ, the value taken by the normal stress amplitude at the oscillating wall, in corre-
pondence of an antiresonant response of the system, reachesits minimum in the
limit α → 0.

Then, at a fixedα, the value of|Pzz(z = −δ/2)| corresponding to the main an-
tiresonant frequency decreases by increasingδ. Therefore, squeezed-film dampers
vibrating at high frequencies, unlike the low frequency MEMS devices, do not
need to operate at very low pressure in order to minimize the damping due to gas
flow, greatly reducing the need for (and cost associated with) vacuum packaging.
This effect has been already noticed in the experimental testing of micromechan-
ical resonators vibrating at high frequencies [1, 5] and in apreliminary numerical
investigation [6, 7] but, up to now, it has not received a complete theoretical justi-
fication.
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