A KINETIC APPROACH FOR THE EVALUATION OF DAMPING IN
MICRO-ELECTRO-MECHANICAL SYSTEMS DEVICES VIBRATING
AT HIGH FREQUENCIES

SILVIA LORENZANI AND LAURENT DESVILLETTES

ABSTRACT. The mechanism leading to gas damping in Micro-Electrohd@dical
Systems (MEMS) devices vibrating at high frequencies istigated by us-

ing the linearized Boltzmann equation based on the elljzatatistical (ES)

model. Knowing that walls with different physical struatgrare used in design-
ing micromachines, general boundary conditions of Maxa/é}ipe have been

considered to describe the gas-wall interactions.
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1. INTRODUCTION

Micro-Electro-Mechanical Systems (MEMS) devices haveiram growing at-
tention in recent years. This is due not only to the excitanmaturally associ-
ated with a nascent technology, but also because of the graaise of increased
miniaturization and performance of MEMS devices over catiomal systems. In
particular, microstructures vibrating at high frequendfeanging froml MHz to
60 GHz) find applications in inertial sensing, acoustic trarsin, optical sig-
nal manipulation and RF (radio frequency) components [B, 2, 5]. Such high
frequency devices have become a major research area beayshould enable
a miniaturization and an integration of RF components, &jiplications to ultra
low-power wireless and adaptive/secure telecommuniggtio

In MEMS devices, the fluid is usually trapped under or aroumal \tibrating
micromechanical structure in extremely narrow gaps. Assthécture vibrates, it
pushes and pulls the fluid film creating complex pressurepettthat depend on
the geometry of the structure, the boundary conditiongjuieacy of oscillations
and thickness of the fluid film. In particular, when a planacnostructure oscillates
in the direction perpendicular to its surface, the forcesrtex by the fluid due to
the built-up pressure are always against the movement dfttheture. Thus, the
fluid-film (typically an air-film) acts as a damper and the phraenon is called
squeeze film damping. Besides the viscous forces that deerambow frequencies,
gas compressibility and inertial forces determine the athotidamping at higher
oscillation frequencies. Very recently, gas damping in RENI& systems has
been studied by using the linearized Navier-Stokes equatigth slip boundary
conditions for temperature in [6, 7]. Since the analysisented in [6, 7] failed

1



2 SILVIA LORENZANI AND LAURENT DESVILLETTES

T z

0

FIGURE 1. Channel geometry.

to predict the correct value of the damping force due to am RF MEMS disk
resonator [1, 2], in the current paper, we investigate thehaeism leading to gas
damping in MEMS devices vibrating at high frequencies watthie framework of
kinetic theory of rarefied gas.

2. PROBLEM FORMULATION

Let us consider a monatomic gas confined between two flatjiteyfand parallel
plates located at' = —d/2 andz’ = d/2. Both boundaries are held at a constant
temperaturdy. The upper wall of the channel (locatedzat= d/2) is fixed while
the lower one (located at = —d/2) harmonically oscillates in the’-direction
(normal to the wall itself) with angular frequency (the corresponding period be-
ing 7" = 2w /w'). The basic geometry of the two-dimensional gas layer ibrmat
in Fig.1 The velocityU,, of the oscillating plate depends on tinfethrough the
formula

(1) UL (t') = Upsin(w't)),

where it is assumed that the amplitublg is very small compared to the thermal
velocity vy, i.e.

(2) Ué << v, vy =/ 2RTy,
with R being the gas constant afig being the equilibrium temperature of the gas.

Under these conditions, the Boltzmann equation modelieggis motion inside
the channel can be linearized about a Maxwellfafy putting [8, 9]

®3) f=fo(1+h),

wheref(z’, c, ') is the distribution function for the molecular velocityexpressed
in units ofvy andh (2, ¢, t’) is the small perturbation on the basic equilibrium state.
The above mentioned Maxwellian function is given by

4) fo=por 2 exp(—c?),
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wherep is the equilibrium density of the gas. Using Eq. (3), the natisnary
linearized Boltzmann equation reads as

Ooh oh

A
(5) 8t/ +cZaz, h7

where Lh is the linearized collision operator. Since it is difficult manage the
Boltzmann operatod, as such, for both analytical computations and numerical
simulations, simplified kinetic models of the exact codlisiintegral are widely
used in practice. Because of its simplicity, the Bhatna@anss and Krook (BGK)
model is one of the most popular of these kinetic models [Aitjough it is known
to have a serious flaw: it leads to a wrong Prandtl number tfie dimensionless
ratio of viscosity and thermal conductivity). This diffityican be dealt with when
one works in the linearized framework since viscosity amdgerature effects are
then decoupled [11, 12]. However, for the specific problerthwihich we are
dealing here, where the sound waves generated by the tagillzlate propagate
through the gas across the gap of the channel, both tempenatiations and
thermal conductivity must be accounted for due to compbéigieffects. Thus,
in order to correctly describe both mass and heat transfieryiorth investigating
the problem with a more refined model than the BGK. We shaliefloee use the
ellipsoidal statistical (ES) model, which allows one toaeer the right Prandtl
number [13, 14]. The linearized ES model gives rise to theofiohg collision
operator

(6) Lh=0""p+2c-v+71(c?=3/2) —Acic; Py +A(p+71)c?/2—h|,

whered is a suitable mean free time, while the dimensionless meopis per-
turbed density, velocity v, temperature- and stress tensdr;; are obtained by
taking the moments df

@ p=r [ :” he e de,

(8) v =732 /_—:O che ™ dc,

9) =732 /::o(gc2 -1) he ® de,
(10) Py =n 32 /_ :O cicihe ™ de.

In Eg. (6), A is a constant to be chosen in such a way that the correct Prandt
number is obtained, that is
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i
(ll) P, :CpE>

wherec, is the specific heat at constant pressuréhe viscosity and: the thermal
conductivity. A is equal ta0 for the BGK model £, = 1) and1 for a Maxwell gas
(P, = 2/3). For a general monoatomic gas the relation betweand P, is given

by

2
12 Pr:—a
(12) 24 A
i.e.,
2
1 = — —2.
(13) A=5

In order to get the same viscosity coefficient from the BGK pi@hd the present
one, we must put

(A+2)
2
whered = u/ P, is the collision time defined in the BGK model (with, being
the equilibrium pressure). It is convenient now to resclleagiables appearing in

Egs. (5) and (6) as follows

(14) 6 =

0,

t x 2
15 t= — - _ —

so that the dimensionless ES linearized equation reads

oh oh 2 9
(16) §+CZ$—(2+)\) [p+2c-v+(c -3/2)7

—Acicj Py +)\c2(p+7')/2—h].

Appropriate boundary conditions must be supplied for thétZBwann equation
(16) to be solved. Assuming the diffuse-specular refleatimmdition of Maxwell’s
type and specializing the analysis to symmetric gas-w#dractions (so that an
accommodation coefficiert can be defined), the boundary conditions (under the
assumption (2)) read as [15, 16, 17]

a7 h(z=-6/2,¢c,t) = a(vVm+2¢.) Uy + (1 —a)dc, Uy,
+(1 —a)h(z = —6/2,¢cp, ¢y, —Cz, t)
2 oo oo _
——O‘/ / démdéy/ dé.é. e~ h(z = —0/2,&,1) c. >0,
ﬂ' ~
—o0 J —00 ¢, <0

(18) h(z=10/2,c,t) = (1 —a)h(z =0/2,¢cy,¢y,—Cz, 1)
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2 (o] (o] ~
+—O‘/ / déxdéy/ 4e,¢, e h(z = §/2,&,1)
m —o00 J —00 ¢z >0

whered = d/(vof) is the rarefaction parameter (inverse Knudsen number)gin E
a7),U, is the dimensionless wall velocity given by

(19) Uw(t) = Uy sin(wt),

with U,, = U}, /vo, Uy = U} /vo, w = 0w, T =21 /w =T"/6.

Since the problem under consideration is one-dimensianalpace, the un-
known perturbed distribution functioh, as well as the overall quantities, de-
pend only on ther coordinate. Likewise, we can reduce the dimensionality of
the molecular-velocity space by introducing the followipgpjection procedure
[18, 19]. First, we multiply Eq. (16) b% e~(ex"+ey®) and we integrate over all
¢, andc,. Then, we multiply Eq. (16) for a second time By(c,? + ¢,? —

1) e~ (ex*+ey®) and we integrate again over all andc,. The resulting equations
after the projection are

OH  9H 2
2 P B
(20) ot T TN

A CESY) i N p+2c, v+ (c2—1/2)T— A\ (c2—1/2) Pzz+%(c§— 1/2)(p—{—7):|,
and

0T 9U 2 2 A A
21) 4o - U= -2 2p
@) H e eI YT e [T PCRR ]

where the reduced unknown distribution functiddsand ¥ are defined as

1 —+00 +oo 5 5
(22) H(z,c,,t) = — h(z,c,t) e =t de, de,,
Y
TJ—oo J—o0

and

1 [Feo [hee 2,2
(23)  V(z,c. ) = —/ / (2 + cz — 1) h(z,c,t) e (=) de, dey,
TJ-co J—o0

respectively. In order to derive Egs. (20) and (21) in theialfiform, we have
considered the linearized equation of state

1 1
with P being the dimensionless perturbed pressure of the gas. &bestopic

fields appearing on the right-hand side of Egs. (20) and (&lylefined by
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(25) =L [T
z, = —F € Fdacy,
g N .
(26) (2,t) ! / L He
v,(2,1) = — c, He “=dc,,
Nz .
27) (1) = — /Mz[(? 1/2)H+\If] g
T(2,t) = —= = |(c; — e = dcy,
) ﬁ - 3 z
(28) P,.(z,1) ! /+OO A He % de
22\ %) = = = = Z
N2 .

The elimination of one (or more) component of the molecutdosity by a projec-
tion procedure is quite important for the computationalkeédficy of the numerical
scheme. The reduced distribution functiaisand ¥ must satisfy the following
boundary conditions coming from Egs. (17) and (18)

(29) H(z=—-6/2,c.,t) =a(vT+2c,) Uy + (1 —a)dc, Uy,

+(1—a) H(z = —4§/2, —Cz,t)—20é/ dé, &, e % H(z=—-0/2,¢,,t) ;¢, >0,
¢z<0

(30)

U(z==0/2,c,,t) = (1—a) U(z = =§/2,—c,, 1)

(31) H(z=6/2,c.,t)=(1—a)H(z=6/2,—c,, 1)+
2a/ dé, ¢, e % H(z = 6/2,6,,t) ¢, <0,
¢c.>0

(32)
U(z=10/2,c,,t) = (1—a) V(2 =0/2,—c,, t)

The time-dependent problem described by Egs. (20) and\{@th) boundary con-
ditions given by Egs. (29)-(32), has been numerically sblog a deterministic
finite-difference method presented in detail in [20, 21].ohder to compute the
damping force exerted by the gas on the moving wall of the mhlathe perturba-
tion of the normal stresB, , (defined by Eq. (28)) has to be evaluated at —§/2.
Therefore, our numerical code has been validated in [22]doyparing the values
of the amplitude and of the phase Bf, at the oscillating wall determined by
means of a numerical integration of Eqs. (20) and (21), withhighly accurate
results obtained in [19] from a numerical solution of theslinized Shakhov kinetic
equation, in the case of complete diffuse reemission-(1) at the channel walls.
The normal stress time-dependence is of the following knfomm:
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(33) |Pz2| sin(wt + ¢),

where| P, | is the amplitude and the phase. In general, the amplitude of the time-
dependent macroscopic fields is extracted from our numeegsalts as half the
vertical distance between a maximum and the nearest miniappearing in the
temporal evolution of the macroscopic quantity. This cepands to the definition

(34) |A(z,t)| = [Re(A)? + Tm(A)})V2,

whereRe andZm denote the real and imaginary part, respectively, of thel fiel
A(z,t). Instead, the phase can be recovered from our simulationsigh the
application of a chi-square fit to the functional form of tixpeession (33) [23, 24].
The good agreement shown by the comparison between ourdmdird the results
obtained in [19], by using the Shakhov model, reveals not thré reliability of our
numerical method of solution, but also the weak dependehteemormal stress
field (evaluated at the moving channel wall) on the collisiomodel used.

3. RESULTS AND DISCUSSION

Low frequency MEMS devices are normally operated at very foassure in
order to minimize the damping due to the internal frictiorira# gas flowing in the
small gaps between the moving parts of these microstrieiwiscous damping).
This need can be overcome when MEMS devices vibrate atuwelathigh fre-
guencies, since gas compressibility and inertial forcad then to another damp-
ing mechanism related to the occurrence of sound wave rasesavhich take
place in the direction normal to the channel walls. Corresptg to a resonant
response of the system, the amplitudeRpf at = = —4§/2 reaches its maximum
value (resonance) or its minimum value (antiresonance)e ddcurrence of an
antiresonance is particularly important since if the devgoperated close to the
corresponding frequency, the damping due to the gas (meshéyrthe amplitude
of P,,(z = —4/2,t)) is considerably reduced. In the case of complete diffuse
reemission ¢ = 1), we found a scaling law (valid for all Knudsen numbers) that
predicts a resonant response of the system when the dim&ssadistance be-
tween the channel walls (measured in units of the osciligbieriod of the moving
plate)

/
(35) L0 dw
T 27 Vo
takes a well-defined fixed value. Note that the quantityr vo/w’) is the dis-
tance traveled by gaseous molecules during one cycle dfatim of the moving
boundary. In [22], the values df corresponding to the main resonances have been

analytically derived forx = 1:

L, ~0.21 (antiresonance)
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FIGURE 2. Amplitude of the normal stress tensBy, at the os-
cillating wall versusT for different values of the rarefaction pa-
rameters. In each panel, the three plots correspond to the follow-
ing values of the accommodation coefficient « = 1 (circles),

a = 0.5 (squares)q = 0.1 (triangles).

L, ~0.48 (resonance).

Once these approximated fixed valugég,and L., have been determined, Eq. (35)
allows one to compute the valuesBfor the occurrence of resonances and antires-
onances for different values of the rarefaction paramefemogressing from free
molecular, through transitional, to continuum regionsi¢si the ratiolL. = §/T
must assume always the same constant value each time tleensystiergoes a
resonant response).

It is worth noting that the double degenerate geometry demnsd here, that is,
infinitely long and wide channels, does not affect in any weg/results obtained,
since the numerical simulations carried out in [22] havenshthat, above a certain
frequency of oscillation, the sound wave propagation tgkase only in thez-
direction across the gap. This fully trapped gas situatimatly simplifies the
analysis since the topology of the damper becomes insignifiand the problem
can be reduced to edimensional one.

A change in the boundary conditions, obtained by assumisg 1, breaks the
scaling law as expressed by Eq. (35). This is clearly showRign 2, where
the profiles of the normal stress amplitude at the osciligtirall are plotted as a
function of the periodl’, for three different values of the rarefaction paraméter
and of the accommodation coefficient While the location of the main resonance
(resp. antiresonance) which corresponds to the highesinmiax (resp. lowest
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minimum) remains almost unchanged in the near-continuuwm Iffait (6 = 10)
by varying«, the influence of the accommodation coefficient becomeseaviith
the transitional regiond(= 1) and in the near free-molecular flow limif & 0.1).
As « decreases, the location of the resonances (antiresonamoceges towards
smaller values of for 6 = 1 andé = 0.1. This means that, for each given 1,
the dimensionless distance between the channel waltgfined by Eq. (35), does
not assume a fixed constant value any longer.

Furthermore, even if the value @P,.(z = —¢/2)| corresponding to the main
resonant and antiresonant frequencies is a honmonotamitida of o, at a fixed
4, the value taken by the normal stress amplitude at the asagl wall, in corre-
pondence of an antiresonant response of the system, reigemeimimum in the
limit o — 0.

Then, at a fixedy, the value of P..(z = —4/2)| corresponding to the main an-
tiresonant frequency decreases by increasintherefore, squeezed-film dampers
vibrating at high frequencies, unlike the low frequency M&Mevices, do not
need to operate at very low pressure in order to minimize #meping due to gas
flow, greatly reducing the need for (and cost associated)widbuum packaging.
This effect has been already noticed in the experimentihtesf micromechan-
ical resonators vibrating at high frequencies [1, 5] and prediminary numerical
investigation [6, 7] but, up to now, it has not received a ctatgptheoretical justi-
fication.
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