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Abstract

The problem of the field scattered by a cavity embedded in an impedance (or
Robin) plane is considered for the 3D Helmholtz equation in acoustics. Its resolu-
tion is more complex than for a scatterer above the plane, in particular because the
Green’s function for the unperturbed plane has a singular part unsuitable for appli-
cations below the plane. It is why the free space Green’s function is commonly used
in boundary integral equations for the cavity, and three unknowns are necessary.
We propose here to use a novel Green’s function below the impedance plane, which
has the advantage to reduce the number of unknowns, and to simplify the problem.
This specific Green’s function derives from our recent study for passive and active
unperturbed impedance planes. The uniqueness property is studied in passive case.
The application to small cavity leads us to new analytical results.

1 Introduction

This paper presents novel integral equations for the field scattered by a cavity embedded
in an imperflectly reflective plane with impedance boundary conditions, for the three-
dimensional Helmholtz equation, and analytical approximations for small cavities.

The development of boundary integral equation methods, in 2D and 3D, for this
scattering problem is rather recent [1],[2], seemingly because of specific difficulties due to
the representation of the field in the cavity. Indeed, the Green’s function Ga, defined as
the field of a monopole in presence of the unperturbed impedance plane, which is perfectly
adapted to reduce the radiation of an aperture in the plane to an expression depending
only on one unknown, has a defect: it has a logarithmic singularity (a logarithmic branch
cut) in lower half space that prevents it from being applied below the plane. It is why,
until now, the Green’s function in free space was preferred for the representation of the
field in the cavity. That induces an additional unknown to characterize the radiation of
the aperture below the plane, and finally implies three distinct integral equations for three
surface field unknowns [1].

To reduce the number of unknowns and simplify the system of integral equations,
we here develop an original way, consisting in the definition of a new Green’s function
that we name the ’below’ Green’s function Gb. Both functions Ga and Gb satisfy the
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impedance condition on the unperturbed surface, but the scattered fields attached to
them are respectively regular above and below the plane. They derive from the solution
for an arbitrary constant impedance plane (passive or active) given in [3]-[4].

Morever, our system of two novel integral equations has the property of uniqueness of
the solution. It is an important point, particularly if we notice that most of the boundary
integral equation methods in the related problem of electromagnetism, which use the
generalized network formulation [5], are not uniquely solvable at some discrete frequencies
[6]. Otherwise, other methods verify uniqueness, in particular the one developed by
Chandler-Wilde in acoustics, with a system of three integral equations [1], and the ones
used by Xu [6], Asvestas et al. [7], or Wood et al. [8], for perfectly conducting surface in
electromagnetism, with a system of two vectorial integral equations. It is worth noticing
that, in [6] (see also [9]-[10]), the generalized network formulation is corrected by the image
theory, which is equivalent to using a specific Green’s function in the cavity that takes
account of the plane, while, in [7] and [8], the Green’s functions for Dirichlet and Neumann
plane are combined in an original way to derive novel boundary integral equations.

This scattering problem can be also analyzed in complex spectral domain in 2D, or by
asymptotic methods in 2D and 3D. So, integral equations with smooth kernels in 2D [11],
which permit various approximations for large or small polygonal cavity, or asymptotic
expressions for a large cavity [12]-[13], have been developed.

The paper is organized as follows. In section 2, we define the properties of the acoustic
field, and analyze the uniqueness of the boundary value problem. We present in section
3, the expressions of the Green’s functions Ga and Gb, derived from the solution for an
unperturbed impedance plane. In section 4, we use the second Green’s theorem and give
a representation of the field above the plane and in the cavity. We then deduce the system
of integral equations in section 5 and show the property of uniqueness in section 6. In
section 7, this new system is considered for small cavity and original analytical results
are derived. Some particular developments concerning applications to 2D cases, filled
cavities, protuberances, and electromagnetism are also given in remarks and appendices.

2 Formulation of the boundary value problem and

uniqueness

2.1 Boundary value problem

We consider the pressure field ps scattered by an imperfectly reflective plane that is
perturbed by a cavity (figure 1), when it is illuminated by the incident pressure field pinc,
radiated by a bounded source W above the plane and satisfying the Helmholtz equation,

(∆ + k2)pinc = W (2.1)

in R3, with | arg(ik)| ≤ π/2.
The unperturbated plane S0 is defined by z = 0 in Cartesian coordinates (x, y, z).

The domain of the cavity with z < 0, and the half-space above the plane with z ≥ 0, are
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respectively denoted Ω2 and Ω1. The aperture and the surface of the cavity, respectively
denoted S1 and S2, are assumed to be piecewise analytic (with no zero exterior angles,
i.e. no points of Ω2 inside a cusp), bounded by a Jordan curve C1.

Figure 1: geometry and definition of the cavity

For any plane wave of incidence angle β composing pinc, the infinite plane, when it is
unperturbed, has a reflection coefficient R(β) given by,

R(β) =
cos β − g

cos β + g
, (2.2)

so that p = ps + pinc verifies the impedance (or Robin) boundary condition,

(
∂

∂z
− ikg)p = 0, (2.3)

on the plane S0, except on the aperture S1 of the cavity. The term g = sin θ1 is denoted
the impedance parameter. In (2.3), it is a constant, with Re(ik cos θ1)̸= 0 when Reθ1 ≤ 0.
This condition on g is due to the presence of a cut in the solution for an unperturbed
plane [3]-[4], along the path Re(ik cos θ1)= 0 as Reθ1 ≤ 0. Therefore, the surface waves,
which radiate without exponential decay at infinity, can only be considered in the sense
of the limit for Re(ik cos θ1)= 0+or 0− when Reθ1 ≤ 0.

Some general properties are considered for the scattered field in Ω1 and Ω2:
(a) ps, which satisfies the Helmholtz equation

(∆ + k2)ps = 0 with | arg(ik)| ≤ π/2, (2.4)

in Ω1 ∪ Ω2, is regular in this domain, except at edges and corners of S2 where

ps = O(1) and grad(ps) = O(|r|α),−1 < α ≤ 0, (2.5)

as the distance |r| to the edge or corner vanishes [12], and ps is continuous on the scatterer;
(b) ps is constituted of outgoing waves, with guiding waves exponentially vanishing at

infinity (Re(ik cos θ1) ̸= 0 as Reθ1 ≤ 0), and, the field at M , with r = OM , verifies,

ps = O(e−δ|r|), (2.6)
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δ > 0, as z or ρ =
√
x2 + y2 → ∞, z > 0, when | arg(ik)| < π/2, and

∂ps
∂|r|

+ ikps = o(|r|−1), ps = O(|r|−1), (2.7)

as |r| =
√

x2 + y2 + z2 → ∞, z ≥ 0, when | arg(ik)| = π/2.
In addition, an impedance boundary condition is assumed on the surface of the cavity,

(
∂

∂n
− ikgc)p|S2 = 0, (2.8)

where n̂ is the normal to S2 directed inside Ω2, gc is a function piecewise analytic on S2.

Remark 1. Let us notice that the definitions of the ’acoustic impedance’ (≡ A0p/
∂p
∂n
, A0 a

constant) generally used in physics [14], and of our ’impedance parameter’ (≡ ∂p
∂n
/(ikp)),

are different.

Remark 2. The demonstrations concerning the Hölder regularity of the field near surfaces
with general boundary conditions like (2.8) are lengthy, and some authors often assume
that ikgc is a positive real number to simplify the development (see the remark of Levine
in [15] after lemma 5.2).

2.2 Uniqueness of the solution of the boundary value problem
from [15, sect.7]

In [15], Levine develops an uniqueness theorem, i.e. a proof that pinc ≡ 0 implies p ≡ 0, in
the case of a scatterer with impedance boundary conditions. He considers piecewise C(2+λ)

surface (with no zero exterior angle), λ > 0, without auxiliary ’edge conditions’ at edges
or corner points, except that p is continuous. He studies at first bounded scatterers, but
he also gives, in section 7 of his paper, the elements to generalize his results to scatterers
with infinite boundaries, in particular by the use of Jones’ uniqueness theorem [16], that
we follow.

We begin to notice first that the conditions given by Levine to apply the Green’s first
theorem are satisfied: the cavity is piecewise analytic (with no zero exterior angle), the
field is countinuous on the scatterer, it satisfies impedance boundary conditions and the
conditions (b) at infinity. So, we can write,∫

Ω

(p∗(r)∆p(r) + gradp∗(r)gradp(r))dV = −
∫
S

p∗(r)(n̂ grad(p(r)))dS +

+ lim
a→∞

∫
r=a, z≥0

p∗(r)(
∂p(r)

∂r
)dS, (2.9)

where Ω ≡ Ω1 ∪Ω2, S ≡ S2 ∪ (S0\S1), n̂ is the inward normal to Ω, and from (2.3)-(2.8),

Re(

∫
Ω

−ik|p(r)|2 + |gradp(r)|2

−ik
dV ) =

∫
S2

Re(gc)|p(r)|2dS +

+

∫
S0\S1

Re(g)|p(r)|2dS + I∞, (2.10)
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where
I∞ = lim

a→∞
e−δa = 0 for | arg(ik)| < π/2,

I∞ = lim
a→∞

∫
r=a, z≥0

|p(r)|2dS > 0 for | arg(ik)| = π/2. (2.11)

For Re(g) ≥ 0, Re(gc) ≥ 0 and | arg(ik)| ≤ π/2, the left-hand term is negative since
Re(ik) ≥ 0, while the right-hand term is positive, and thus both terms vanish. Conse-
quently, we have, when | arg(ik)| < π/2,

p(r) = 0 in Ω, for Re(g) ≥ 0, Re(gc) ≥ 0, (2.12)

and, when | arg(ik)| = π/2,

p(r) = 0 on S, for Re(g) > 0,Re(gc) > 0,

∂np(r) = 0 on S, for Re(g) > 0,Re(gc) > 0, or for g = gc = 0. (2.13)

In the latter case, we can use, as suggested by Levine, the Jones’ uniqueness theorem
[16] for surfaces conical at infinity, when Neumann boundary condition (∂np(r)|S = 0) is
satisfied, which implies p ≡ 0 in the entire domain Ω, and thus completes the proof of
uniqueness. Let us notice, that another proof has been independently developed in [1]
when S is smooth.

3 The ’above’ Green’s function Ga and the ’below’

Green’s function Gb

The integral representations of the field with single and double layers potentials gener-
ally derive from the use of free space Green’s function [12], but more complex Green’s
functions, verifying particular boundary conditions, can be used. In this latter case, a
particular attention must be paid to the regularity of these functions.

So, when we consider a perturbation, due to a scatterer above an impedance plane,
we can use the solution Ga for unperturbed case to express the field everywhere, while it
is generally not possible for a cavity, because of the logarithmic singularity of Ga below
the plane.

Therefore, we here develop an original way consisting in using another Green’s function
in the cavity that we name the ’below’ Green’s function Gb. Both functions Ga and Gb

satisfy the impedance boundary condition (2.3) at z = 0, and derive from the solution for
an unperturbed plane, respectively with the impedances g and −g.

In this section, the solution for active and passive plane [3]-[4] are briefly presented,
then Ga and Gb are developed.
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3.1 The solution for an unperturbed impedance plane with ar-
bitrary impedance

3.1.1 Solution for a monopole

We consider the incident field, radiated by a monopole at r′(x′, y′, z′ = h) (figure 2),
pinc = e−ikR(z)/kR(z) at M(x, y, z), with R(z) =

√
(x− x′)2 + (y − y′)2 + (z − z′)2.

Figure 2: geometry and definition of φ for the radiation at M

From [3], the field ps scattered by the impedance plane is then given by

ps =
e−ikR(−z)

kR(−z)
+ 2igeikg(z+h)Jg(ρ,−z − h), (3.1)

where R(−z) =
√
ρ2 + (z + h)2, z + h = R(−z) cosφ, ρ = R(−z) sinφ, and,

Jg(ρ,−z) =
e−ikgz

2

∫
D

H
(2)
0 (kρ sin β)e−ikz cosβ

cos β + g
sin βdβ, (3.2)

for z > 0, g = sin θ1, with Re(ik sin β) = 0 on D from −i∞−arg(ik) to i∞+arg(ik). This
function is a Fourier-Bessel integral commonly encountered in scattering theory [17, p.234],
also called a Sommerfeld-type integral [18], which has a cut described by Re(ik cos θ1) = 0
when Re(g) ≤ 0 and a singularity at g = −1.

A correct definition of Jg for arbitrary g = sin θ1, active (Reg < 0) or passive (Reg >
0), except on the cut, is also given [3] by,

Jg(ρ,−z − h) = −
∫ ∞

−ib

e−a cosh tdt = i

∫ i∞

b

e−a cosαdα, (3.3)
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where a = ϵikR(−z) sinφ cos θ1, ϵ =sign(Re(ik cos θ1)) (Re(a) = 0 is on a cut of Jg and
it can be only considered in the sense of the limit), and b satisfies

e∓ib =
ikR(−z)

a
(1± sin θ1)(1± cosφ), (3.4)

with |Reb| < π, e−2ib = (1+sin θ1)(1+cosφ)
(1−sin θ1)(1−cosφ)

, |Re(θ1)| ≤ π/2. As g varies, this expression has a

correct cut as ϵ changes of sign for Reg < 0, and is regular elsewhere (note: for Reg > 0,
the change of sign of ϵ does not induce a cut as g varies). The figure 3 shows the perfect
agreement of Jg given respectively by (3.3) and by Fourier-Bessel expansion (3.2).

Figure 3: Comparison of Jg given by (3.3) (− −) and by Fourier-Bessel expansionwhen
(3.2) is used (− ◦ −), when Reg varies; left: |Jg| when Im(g) = −0.4, z + h = .2, ρ = .3,
ik = .01 + i1.; right: |Jg| when Im(g) = 1.2, z + h = 1., ρ = 1., ik = .01 + i1.

3.1.2 Some properties of Jg

Some general properties of Jg, derived from (3.3), are worth noticing. Using the integral
expression of the modified Bessel function K0 [19], we can write,

Jg(ρ,−z − h) +K0(a) = −i

∫ b

0

e−a cosαdα = −i

∫ 0

−b

e−a cosαdα, (3.5)

which implies, by definition of b and a, that

Jg(ρ,−z − h) +K0(a) = −J−g(ρ, z + h)−K0(a), (3.6)

where a = ϵikρ cos θ1, ϵ =sign(Re(ik cos θ1)). From the regularity of J±g(ρ,−z) for z > 0
and the expression of b, we deduce that Jg(ρ,−z) has a logarithmic singularities when
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z ≤ 0 at ρ = 0. So, when a, and thus, when ρ vanishes, we have [3]

Jg(ρ,−z) ∼ −2K0(a) when z < 0, g ̸= −1,

Jg(ρ,−z) ∼ −K0(a) when z = 0, g ̸= −1,

Jg(ρ,−z) ∼ −E1(
ik(1 + g)

2
(|r|+ z)). (3.7)

where E1 is the exponential integral [19]. Moreover, the reader can verify by inspection
that,

∂Jg(ρ,−z − h)

∂z
=

e−ik(R(−z)+g(z+h))

R(−z)
, (3.8)

and,
(∆ + k2)(eikgzJg(ρ,−z)) = 4πeikgzU(−z)δ(x)δ(y), (3.9)

where U is the unit step function, δ is the Dirac function.

Remark 3. Let us notice [3] that, for Reg > 0 and arg(ik) = π/2,

Jg(ρ,−z − h) =

∫ 0

−i∞
e−ikg(z1+z+h) e

−ikR(−z1−z)

kR(−z1 − z)
k dz1, (3.10)

where R(−z) =
√
ρ2 + (z + h)2, and that, for g = 1,

Jg=1(ρ,−z − h) = −E1(ik(R(−z) + (z + h))). (3.11)

3.2 The functions Ga and Gb

3.2.1 The Green’s functions Ga above the plane

The Green’s function Ga is given by the solution for a monopole above the plane with
impedance parameter g . From the previous section, it is given by

Ga(r, r
′) = G0(x− x′, y − y′, z − z′) +Gs

g(x− x′, y − y′,−z − z′) , (3.12)

where G0 is the free space Green’s function,

G0(r) =
e−ik|r|

k|r|
, (3.13)

and Gs
g is the scattered Green’s function,

Gs
g(r) =

e−ik|r|

k|r|
+ 2ige−ikgzJg(ρ, z), (3.14)

with |r| =
√
ρ2 + z2 and ρ =

√
x2 + y2.
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Because

(∆ + k2)G0(r) =
−4π

k
δ(x)δ(y)δ(z), (3.15)

and the equation (3.9) satisfied by Jg(ρ,−z), the function Ga verifies in R3,

(∆ + k2)Ga(r, r
′) =

−4π

k
(δ(r − r′)+

+ δ(r − r′im)− 2ikgeikg(z+z′)U(−z − z′)δ(x− x′)δ(y − y′)), (3.16)

where r′im ≡ (x′, y′,−z′), δ(r) ≡ δ(x)δ(y)δ(z). It satisfies correct radiation conditions
at infinity for z ≥ 0 (equ. (2.6)-(2.7) in condition (b)), and will be our choice for the
Green’s function above the plane for arbitrary g = sin θ1, except for Re(ik cos θ1) = 0
when Re(g) ≤ 0 (i.e. except on the cut of Jg).

3.2.2 The Green’s functions Gb below the impedance plane

The function Ga cannot be used to describe the field in the cavity, when it is influenced
by fictitious sources on the aperture, in particular because of the presence of a logarithmic
singularity of Jg(ρ,−z) for negative z when ρ = 0.

However, we can consider J−g(ρ, z) instead of Jg(ρ,−z), and obtain an original Green’s
function Gb, which is suitable for an integral representation of the field in the cavity, and
continues to satisfy the impedance boundary condition (2.3). This choice will be corrected
in the vicinity of g = 1 to take account of the singularity of J−g at this point.

The function Gb for g ̸= 1

We remark that, below the plane where z + z′ < 0, the function

Gb(r, r
′) = G0(x− x′, y − y′, z − z′) +Gs

−g(x− x′, y − y′, z + z′) , (3.17)

with

Gs
−g(r) =

e−ik|r|

k|r|
− 2igeikgzJ−g(ρ, z), (3.18)

continues to satisfy the impedance boundary condition (2.3) on the plane z = 0, is regular
for z + z′ < 0, except for the singularity of G0 at z = z′, and verifies in R3,

(∆ + k2)Gb(r, r
′) =

−4π

k
(δ(r − r′)+

+ δ(r − r′im) + 2ikgeikg(z+z′)U(z + z′)δ(x− x′)δ(y − y′)) (3.19)

where r′im ≡ (x′, y′,−z′), δ(r) ≡ δ(x)δ(y)δ(z).
This will be our choice for the Green’s function below the plane, except in the vicinity

of g = 1 (where J−g is singular) and on the cut of J−g (the case with Re(ik cos θ1) = 0
has to be taken in the sense of the limit). Let us notice that it satisfies the usual radiation
conditions at infinity, similar to (b) but in lower space instead of upper space.
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Remark 4. In the case of a cavity Ω2 filled with a material of wave number k2 instead
of k, and the conditions of continuity p|z=0− = p|z=0+ and ∂zp|z=0− = a2∂zp|z=0+, we
consider Gb with the parameter g2 instead of g satisfying k2g2 = a2kg so that (∂zp(r

′) −
ik2g2p(r

′))|z=0− = a2(∂zp(r
′)− ikgp(r′))|z=0+.

A suitable choice for Gb when g ≃ 1, regular on the cut of J−g

The function J−g(ρ, z) is singular at g = 1. However, considering the equations (3.6)
and the domain of regularity of Jg [3], the function J−g(ρ, z)+2K0(a) is regular for ρ ̸= 0
in vicinity of g = 1, as g = sin θ1 varies, with a = ikϵρ cos θ1, ϵ =sign(Re(ik cos θ1)). We
can then use that

K0(a) + ln(a)I0(a) (3.20)

is an entire function of a [19], and

(∆ + k2)(eik sin θ1zI0(ikϵρ cos θ1)) = 0, (3.21)

and choose to add the term

Db(r, r
′) = 4ig ln(ikd cos θ1)I0(ik cos θ1

√
(x− x′)2 + (y − y′)2)eikg(z+z′), (3.22)

to Gb for g ≃ 1, where d is an arbitrary constant. So defined,

Gb(r, r
′) = G0(x− x′, y − y′, z − z′) +Gs

−g(x− x′, y − y′, z + z′) +Db(r, r
′), (3.23)

becomes regular for Reg ≥ 0, and presents, as g varies, the same cut and singularities as
Ga for Reg ≤ 0.

This function continues to satisfy the impedance boundary condition (2.3) on the
plane z = 0, is regular for z + z′ < 0 except for the singularity of G0, and verifies (3.19).
The corrective term Db(r, r

′) does not satisfy the usual radiation conditions at infinity but
it will be of no consequence for our demonstration in further sections, and this function
can be used when |ikϵρ cos(θ1)| ≪ 1 is verified in the whole cavity.

Remark 5. For g → 1,we notice [3] that

J−g(ρ, z) = E1(
ik(1 + g)(|r|+ z)

2
)− 2K0(a)+

+O(ik(1− g)(|r| − z)E2(
ik(1 + g)(|r|+ z)

2
)) (3.24)

and thus

Gs
−g(r) +Db(r) →

e−ik|r|

k|r|
− 2ieikz(E1(ik(|r|+ z)) + 2 ln(ρ/d)), (3.25)

which is regular for z < 0, ρ → 0, since |r|+ z = ρ2

|r|−z
and E1(v) = − ln(v) +O(1).
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3.2.3 Some additional properties of Ga(,b)(r, r
′)

From the derivative of Jg given in (3.8), we have

(
∂.

∂z′
− ikg)Ga(,b)(r, r

′)

= (
∂.

∂z′
)(G0(r − r′) +G0(r − r′im))− ikg(G0(r − r′)−G0(r − r′im)), (3.26)

where r′im ≡ (x′, y′,−z′). This leads us to write, when z = 0,

(
∂.

∂z′
− ikg)Ga(,b)(r, r

′)|z=0 = (
∂.

∂z′
)(2G0(r − r′))|z=0, (3.27)

and, when z′ → 0, z ̸= 0,

(
∂.

∂z′
− ikg)Ga(,b)(r, r

′) → 0. (3.28)

These properties will be particularly useful to prove the continuity of the normal
derivative of the field, deduced from our solution, through the aperture of the cavity.

Moreover, for our choice of Gb for g ̸= 1 (in section 3.2.2), we have

Gb(r, r
′) = Ga(r, r

′) + 4igeikg(z+z′)K0(a)

Gb(r, r
′)|g=v = Ga(rim, r

′
im)|g=−v

(Ga(r, r
′) +Gb(r, r

′))|z=z′=0 = 4(
e−ikρ

kρ
+ ig(Jg(ρ, 0) +K0(a))), (3.29)

while, for our choice of Gb for g ≃ 1 (in section 3.2.2),

Gb(r, r
′) = Ga(r, r

′) + 4igeikg(z+z′)(K0(a) + ln(ikd cos(θ1))I0(ikρ cos(θ1)))

(Ga(r, r
′) +Gb(r, r

′))|z=z′=0 = 4(
e−ikρ

kρ
+ ig(Jg(ρ, 0) +K0(a)+

+ ln(ikd cos(θ1))I0(ikρ cos(θ1)))), (3.30)

where

Jg(ρ, 0) +K0(a) = −i

∫ b

0

e−a cosαdα, b = ∓i ln( ϵ
(1∓ sin θ1)

cos θ1
), (3.31)

with g = sin θ1, a = ϵikρ cos θ1, ϵ =sign(Re(ikρ cos θ1)). Let us also notice that, in
agreement with the reciprocity principle [12], we have Ga(,b)(r, r

′) = Ga(,b)(r
′, r).

Remark 6. We can use (3.11) in (3.30) for g → 1, and notice that, in this case,

(Ga(r, r
′) +Gb(r, r

′))|z=z′=0 → 4(
e−ikρ

kρ
− i(E1(ikρ) + ln(ρ/d))). (3.32)

Remark 7. For |r′| → ∞, r − rim = 2ẑ(ẑ.r), we have

Ga(r, r
′) =

e−ik|r′|

k|r′|
([eik(r.r

′)/|r′|(1 + e
−2ik(ẑ r′

|r′| )ẑ.r(
ẑ r′

|r′| − g

ẑ r′

|r′| + g
))] + o(1)). (3.33)
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4 Integral representation of the field with Ga and Gb

4.1 The representation of the field from the second Green’s the-
orem

Let us consider the pressure fields p and G, satisfying the Helmholtz equation

(∆ + k2)p = W,

(∆ + k2)G = WG, (4.1)

in the domain Ω, bounded by the surface ∂Ω, piecewise analytic. If the functions p and
G have the regularity which permits the application of the second Green’s theorem, we
can write∫

Ω

W (r)G(r) dV −
∫
Ω

WG(r) p(r) dV =

∫
∂Ω+

n̂.(grad(G)p− grad(p)G)dS, (4.2)

where ∂Ω+ denotes the internal surface to Ω, n̂ is the unit normal, piecewise defined,
directed inside Ω, and the surface integral is taken in the sense of principal value of
Cauchy. Thereafter, we omit the sign for ∂Ω+, and we write ∂Ω instead of ∂Ω+.

4.2 The case WG(r) = −wδ(r − r′)

Let us consider WG(r) as a generalized function in (4.2), with WG(r) = −wδ(r − r′), w
being a constant. In this case, we have

1Ω(r
′)p(r′)− pi(r

′) =
1

w

∫
∂Ω

n̂.(grad(G(r, r′))p− grad(p)G(r, r′))dS, (4.3)

for r′ ∈ Ω, where

pi = − 1

w

∫
Ω

W (r)G(r, r′)dV,

1Ω(r
′) =

∫
Ω

δ(r − r′)dr =
1

4π

∫
∂Ω

n̂grad(
1

|r′ − r|
)dS =

1

4π

∫
∂Ω

(r′ − r)

|r′ − r|3
n̂dS, (4.4)

and the integrals are considered in the sense of the principal value of Cauchy. The reader
can easily recover 1Ω, by letting k = 0, G(r, r′) = w

4π|r′−r| and p ≡ 1.

Remark 8. 1Ω = 1 in Ω, 1Ω = 0 in R3\Ω, and 1Ω is fractional on ∂Ω (= 1
2
when ∂Ω

is smooth). For an external problem in R3\Ω′, the surface can be considered to be closed
at infinity when the Sommerfeld conditions at infinity are satisfied (for example with

G(r, r′) = we−ik|r′−r|

4π|r′−r| ) so that 1R3\Ω′(r′) = 1 − 1Ω′(r′). Let us notice that, when n̂grad(p)

and p vanishes on a continuous part of ∂Ω, and W ≡ 0, we can use that 1Ω = 0 in R3\Ω
and the analytical continuation through an hole, and conclude that p = 0 in Ω.
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Remark 9. Considering the continuity of the single-layer potential in (50), we notice
that

1

w

∫
∂Ω

(n̂.grad(G(r, r′))pe(r)− qe(r)G(r, r′))dS|r′∈Ω→r0∈∂Ω

→ (1− 1Ω(r0))pe(r0)+

+
1

w
p.v.

∫
∂Ω

(n̂.grad(G(r, r0))pe(r)− qe(r)G(r, r0))dS, (4.5)

when pe is continuous on ∂Ω, qe(r)G(r, r′) is summable and its integral is continuous.

4.3 Integral representation of the field above the plane and in
the cavity

4.3.1 Integral representation of the field above the plane

From the definitions of Ga and p = ps + pinc, we can use the second Green’s theorem for
Ω tending to the infinite half-space Ω1 above the plane. Indeed, considering the condition
(b), and the impedance boundary condition (2.3), satisfied by p and Ga on the plane
z = 0, the surface integral at infinity and on S0\S1 vanishes, so that we obtain,

(1Ω1(r
′) + 1Ω1(r

′
im))p(r

′)− pi(r
′) =

−k

4π

∫
S1

Ga(r, r
′)(∂zp(r)− ikgp(r))dS, (4.6)

for z ≥ 0, where (1Ω1(r
′) + 1Ω1(r

′
im)) = 1 since r′im ≡ (x′, y′,−z′), and

pi(r
′) =

−k

4π

∫
Ω1

W (r)Ga(r, r
′)dV (4.7)

is the field in presence of the plane without cavity.

4.3.2 Integral representation of the field in the cavity

From the definitions of Gb and p = ps + pinc,we can use the second Green’s theorem in
the domain Ω2 of the cavity, which gives us,

(1Ω2(r
′) + 1Ω2(r

′
im))p(r

′) +
k

4π

∫
Ω2

W (r)Gb(r, r
′) dV =

=
k

4π

∫
∂Ω2

n̂.(grad(Gb(r, r
′))p− grad(p)Gb(r, r

′))dS, (4.8)

where 1Ω2(r
′) =

∫
Ω2

δ(r − r′)dr = 1
4π

∫
∂Ω2

(r′−r)
|r′−r|3 n̂dS, n̂ is the unit normal to S2 directed

inside Ω2, and r′im ≡ (x′, y′,−z′).
Considering that the source W is above the plane, and that Gb (resp. p) satisfies the

impedance boundary condition (2.3) (resp. (2.8)), the equation (4.8) becomes

(1Ω2(r
′) + 1Ω2(r

′
im))p(r

′) =
k

4π

∫
S1

Gb(r, r
′)(∂z(p(r))− ikgp(r))dS+

+
k

4π

∫
S2

p(r)(∂nGb(r, r
′)− ikgcGb(r, r

′))dS, (4.9)
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for z′ ≤ 0, where ∂n(.) = n̂.grad(.), and we notice that,

(1Ω2(r
′) + 1Ω2(r

′
im)) = 1 in Ω2\S2,

1Ω2(r
′
im) = 0 in Ω2\S1,

(1Ω2(r
′) + 1Ω2(r

′
im)) = 0 when r′ /∈ Ω2. (4.10)

Remark 10. Even if ∂nGb(r, r
′)|r∈S2 diverges when r′ /∈ S2 → r, it is continuous when r′

belongs to smooth parts of S2.

5 The integral equations on the aperture S1 and on

the surface of the cavity S2

On the apertureS1, we can substract the equation (4.6) from (4.9), and obtain

((1Ω2(r
′) + 1Ω2(r

′
im)− 1)p(r′) + pi (r

′))|r′∈S1 =

=
k

4π

∫
S1

(Ga(r, r
′) +Gb(r, r

′))(∂zp(r)− ikgp(r))dS

+
k

4π

∫
S2

p(r)(∂n(Gb(r, r
′))− ikgcGb(r, r

′))dS, (5.1)

where we notice that (1Ω2(r
′)+ 1Ω2(r

′
im)) = 1 on S1, except possibly on S1 ∩S2, while, on

the surface S2 of the cavity, we can write, from (4.9),

(1Ω2(r
′) + 1Ω2(r

′
im))p(r

′)|r′∈S2
=

k

4π

∫
S1

Gb(r, r
′)(∂zp(r)− ikgp(r))dS+

+
k

4π

∫
S2

p(r)(∂n(Gb(r, r
′))− ikgcGb(r, r

′))dS, (5.2)

where 1Ω2(r
′) =

∫
Ω2

δ(r − r′)dr = 1
4π

∫
∂Ω2

n̂.grad( 1
|r′−r|)dS (= 1

2
on smooth parts), the

surface integrals are taken in the sense of principal value of Cauchy, and ∂n(.) = n̂.grad(.),
n̂ is the unit normal to S2 directed inside Ω2.

The integral equations (5.1)-(5.2) represent a system for two unknowns,

q1(r) = (∂zp(r)− ikgp(r))|r∈S1 ,

p2(r) = p(r)|r∈S2 , (5.3)

respectively on the aperture and on the surface of cavity, whose solution permits to express
the field everywhere.

6 Uniqueness property of the integral equations

From the conditions of regularity given in (a), we consider the solutions of our integral
equations (5.1)-(5.2), q1(r) (on the aperture) and p2(r) (on the surface of the cavity), such
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that q1 = O(rα), −1 < α ≤ 0, as the distance to edges or corners vanishes, and p2 is
continuous. We then study the uniqueness of q1 and p2 when Reg > 0 and Regc > 0, or
g = gc = 0, and verify that q1 and p2 vanish when pi ≡ 0.

For this, we show that we can define a field pe(r
′), derived from q1, p2 and pi, which

verifies p2(r
′) = pe(r

′) on S2 and q1(r
′) = ∂zpe(r

′) − ikgpe(r
′) on S1, and satisfies the

boundary value problem with the conditions of uniqueness given in section 2.

6.1 A field pe(r
′) derived from p2 and q1

We consider the field pe derived, from q1 and p2, following

pe(r
′)|r′∈Ω1 =

−k

4π

∫
S1

Ga(r, r
′)q1(r)dS + pi(r

′), (6.1)

in the domain Ω1 above the plane, and,

pe(r
′)|r′∈Ω2 = (1− (1Ω2(r

′) + 1Ω2(r
′
im)))p2(r

′) +
k

4π

∫
S1

Gb(r, r
′)q1(r)dS+

+
k

4π

∫
S2

p2(r)(∂nGb(r, r
′)− ikgcGb(r, r

′))dS, (6.2)

in the domain Ω2 of the cavity, where the surface integrals are taken in the sense of
principal value of Cauchy.

The expression (6.2) verifies, likeGb, the Helmholtz equation in Ω2, while (6.1) satisfies,
like Ga, the Helmholtz equation in Ω1 with the radiation conditions at infinity given in
(b), and the impedance conditions on S0\S1. Moreover, from the equation of continuity
(4.5), the function pe(r

′) is continuous up to S2.
It then remains to verify the continuity through the aperture S1 of the cavity, the

impedance boundary condition on S2, and to analyze the expressions of q1 and p2 with
pe. Therefore, we show that we have,

- pe(r
′) = p2(r

′) on the surface of the cavity S2;
- the continuity of pe(r

′) through the aperture S1;
- the continuity of ∂zpe(r

′)− ikgpe(r
′) through S1;

- ∂zpe(r
′)− ikgpe(r

′) = q1(r
′) on S1;

- ∂npe = ikgcp2 on S2,
in the case pi ≡ 0, considered for the uniqueness.

6.2 pe(r
′) = p2(r

′) on S2

Substracting the integral equation (5.2) from (6.2) for r′ ∈ S2, we obtain

pe(r
′) + (1Ω2(r

′) + 1Ω2(r
′
im)− 1) p2(r

′) = (1Ω2(r
′) + 1Ω2(r

′
im))p2(r

′), (6.3)

on S2, and thus,
pe(r

′)|r′∈S2 = p2(r
′). (6.4)
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6.3 Continuity of pe(r
′) through S1

The integrals in the expressions (6.1) and (6.2) of pe(r
′) remain convergent when the

point of observation approaches the aperture respectively above and below S1. Morever,
(1Ω2(r

′) + 1Ω2(r
′
im)) = 1 in Ω2\S2, and, from the integral equation (5.1) with pi ≡ 0, the

expressions (6.1) and (6.2) tend to the same limit, which proves the continuity of pe(r
′)

through the aperture S1.

6.4 Continuity of ∂z′pe(r
′)− ikgpe(r

′), equal to q1(r
′) on S1

Using (3.27) in the expressions (6.1) and (6.2) of pe(r
′), we can write

∂z′pe(r
′)− ikgpe(r

′)|z′=h>0 =
−k

4π
(
∂.

∂z′
)

∫
S1

2G0(r, r′)q1(r)dS|z′=h,

∂z′pe(r
′)− ikgpe(r

′)|z′=−h<0 =
k

4π
(
∂.

∂z′
)

∫
S1

2G0(r, r′)q1(r)dS|z′=−h+

+
k

4π
(
∂.

∂z′
− ikg)

∫
S2

p2(r)(∂nGb(r, r
′)− ikgcGb(r, r

′))dS|z′=−h, (6.5)

We then apply that,

(
∂.

∂z′
− ikg)Gb(r, r

′) → 0when z′ → 0, z ̸= 0,

(
∂.

∂z′
)G0(r(x, y, 0), r′)|z′=h = −(

∂.

∂z′
)G0(r(x, y, 0), r′)|z′=−h, (6.6)

This implies that the contribution of the integral term along S2 vanishes when h → 0,
and that we have the continuity of ∂zpe(r

′)− ikgpe(r
′) through the aperture S1.

Moreover, we notice that

± (∂z′pe(r
′)− ikgpe(r

′))|z′=h>0 → −k

4π
(
∂.

∂z′
)

∫
S1

2G0(r, r′)q1(r)dS|z′=±h, (6.7)

when h → 0, while, by application of the discontinuity property of the normal derivative
of the single-layer potential [20] and substraction of the relations in (6.7) for plus and
minus signs, we can write

∂zpe(r
′)− ikgpe(r

′) = q1(r
′) on S1. (6.8)

6.5 ∂npe(r
′) = ikgcpe on S2

The field pe(r
′), defined by (6.2), satisfies the Helmholtz equation in Ω2, and we can write

in this domain, from the second Green’s theorem,

(1Ω2(r
′) + 1Ω2(r

′
im))pe(r

′) =
k

4π

∫
S1

Gb(r, r
′)(∂zpe(r)− ikgpe(r))dS+

+
k

4π

∫
S2

(pe(r)∂nGb(r, r
′)−Gb(r, r

′)∂npe(r))dS. (6.9)
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We have proved that ∂z(pe(r))− ikgpe(r) = q1(r) on S1 and pe(r) = p2(r) on S2, and
substracting (6.9) from (6.2), we obtain, for r′ ∈ Ω2,

k

4π

∫
S2

Gb(r, r
′)µ(r)dS = 0, (6.10)

with µ(r) ≡ ∂npe(r)− ikgcpe(r).
The surface S2, bounded by the curve C1, is open, and, considering the domain of

analyticity of Gb(r, r
′), we can use the analytic continuation principle through S1. So,

the potential

P(r′) =
k

4π

∫
S2

Gb(r, r
′)µ(r)dS, (6.11)

vanishes in the domain Ω ≡ Ω2 ∪ Ωi
2, where Ωi

2 (resp. Si
2) is the symmetric of Ω2 (resp.

S2) relatively to the plane z = 0.
From the properties of Gb, P is also regular in R3\(Ω ∪ Ωc), where Ωc is the upper

part of the cylinder along z-axis bounded by Si
2. It is then possible to prove that µ ≡ 0.

For this, two distinct proofs are detailed in appendix A, successively for g = 0 or g → ∞,
and, for g ̸= 0, |g| < ∞.

7 Some simplifications of the integral equations for a

shallow cavity

The integrals with ∂n(
e−ik|r−r′im|

k|r−r′im| ) terms, in the equations (5.1)-(5.2), become difficult to

calculate when |r − r′im| → 0 and the depth vanishes. Therefore, we develop our integral
equations in a new form, and analytical expressions are derived.

7.1 A new form of the integral terms for shallow cavity

For a shallow cavity, we let

Gbs(r, r
′) = Gb(r, r

′)−Gst(r, r
′),

Gst(r, r
′) =

1

k|r − r′|
+

1

k|r − r′im|
,

r′2(r1) ∈ S2, r1 ∈ S1, (7.1)

where r′2(.) is a projection of S1 on S2 with r′2(r1) → r1 when r′2(r1) → S1. We then
consider the domain Ω defined so that 1Ω(r

′) = 1Ω2(r
′) + 1Ω2(r

′
im), and notice that

1Ω(r
′)p2(r

′) =
p2(r

′)

4π

∫
∂Ω

n̂ grad(
1

|r − r′|
)dS,

=
k

4π

∫
S2

n̂ grad(Gst(r, r
′))p2(r

′)dS, (7.2)
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We can use this equality, and derive a new form of integrals along S2 in our system of
equations.

So, we obtain, for r′ ∈ S1,

pi (r
′)− p2(r

′
2(r

′)) =
k

4π

∫
S1

(Ga(r, r
′) +Gb(r, r

′))q1(r)dS+

+
k

4π

∫
S2

p2(r)(∂n(Gbs(r, r
′))− ikgcGb(r, r

′))dS+

+
k

4π

∫
S2

(p2(r)− p2(r
′
2(r

′)))∂n(Gst(r, r
′))dS, (7.3)

while, for r′ ∈ S2,

− k

∫
S2

(p2(r)− p2(r
′))∂n(Gst(r, r

′))dS = k

∫
S1

Gb(r, r
′)q1(r)dS+

+ k

∫
S2

p2(r)(∂n(Gbs(r, r
′))− ikgcGb(r, r

′))dS. (7.4)

Comparing with previous integral equations system, we notice that the term ∂n(
1

k|r−r′im|)

is multiplied by terms that vanish as |r− r′im| → 0, so that the difficulty of calculus for a
small cavity depth has disappeared. Let us remark that this modification can be applied
whenever a part of S2 is close to S1.

7.2 The limit case of an impedance patch

In the limit case where S2 ≡ S1, the integral with ∂nGst(r, r
′) vanishes, and ∂n(Gbs(r, r

′)) =
ikg Gb(r, r

′), so that we obtain, for r′ ∈ S1,

k

∫
S1

Gb(r, r
′)(q1(r) + ik(g − gc)p2(r))dS|z′=0− = 0,

pi (r
′)− p2(r

′) =
k

4π

∫
S1

Ga(r, r
′)q1(r)dS|z′=0+ , (7.5)

where q1(r) and p2(r) are assumed to be continuous on S1. The first equation implies
q1(r) = ik(gc−g)p2(r) (see appendix C), which leads us to recover the well-known integral
equation [21] for an impedance patch,

p2(r
′)− pi (r

′) =
k

4π

∫
S1

Ga(r, r
′)ik(g − gc)p2(r)dS. (7.6)

Remark 11. Let us notice that

k

∫
S1

Ga(r, r
′)µ(r)dS|z′=0+ = 0, (7.7)

for r′ ∈ S1, µ(r) continuous on S1, implies µ(r) ≡ 0 (see appendix C).
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7.3 On some approximations for a small cavity, and validation.

7.3.1 Approximate expressions for a small cavity

For small dimensions with kdc = k
∫
Ω2

dV∫
S1

dS
≪ 1 and k2

∫
S1
dS ≪ 1, we assume that

p2(r)− pc = o(kdc), q1(r)− qc = o(kdc), pc =

∫
S2
p2dS∫

S2
dS

, qc =

∫
S1
q1(r)dS∫
S1
dS

, (7.8)

and that, the terms ∫
S2

(p2(r)− pc)

∫
S2

∂n(Gbs(,st)(r, r
′))dS ′dS,∫

S1

(q1(r)− qc)

∫
S2(,1)

Gb(,a)(r, r
′)dS′dS, (7.9)

are negligible in our calculus. We can then determinate qc and pc, after integration over
S2 and S1 of integral equations, and obtain an approximate expression of the radiated
field.

We notice first that we have

(∆ + k2)Gbs(r, r
′) = −k2Gst(r, r

′), r′ ∈ Ω2, r ∈ Ω2,∫
∂Ω2≡S2∪S1

∂nGbs(r, r
′)dS = k2

∫
Ω2

Gst(r, r
′)dV, r′ ∈ Ω2,

∂zGbs(r, r
′) = ikgGb(r, r

′), r′ ∈ Ω2, r ∈ S1, (7.10)

and thus,∫
S2

∂nGbs(r, r
′)dS =

∫
S1

ikg Gb(r, r
′)dS + k2

∫
Ω2

Gst(r, r
′)dV, r′ ∈ Ω2. (7.11)

Then, summing the integral equation (7.4) over S2 and using (7.11), we obtain

qc

∫
S1

∫
S2

Gb(r, r
′)dS′dS = (ikpc(

∫
S2

gc

∫
S2

Gb(r, r
′)dS ′dS−

−
∫
S1

g

∫
S2

Gb(r, r
′)dS′dS)− k2pc

∫
Ω2

∫
S2

Gst(r, r
′)dS ′dV )(1 + o(1)), (7.12)

and deduce that
qc = ikpc[(rc(gc)− g) + iklc](1 + o(1)), (7.13)

where

rc(gc) =

∫
S2
gc
∫
S2
Gb(r, r

′)dS′dS∫
S1

∫
S2
Gb(r, r′)dS ′dS

∼
∫
S2
gcdS∫

S1
dS

,

lc =

∫
Ω2

∫
S2
Gst(r, r

′)dS′dV∫
S1

∫
S2
Gb(r, r′)dS ′dS

∼
∫
Ω2

dV∫
S1
dS

. (7.14)
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We then consider the integral equation (7.3), sum it over S1, and use (7.11). This gives
us, ∫

S1

pi (r)dS − pc

∫
S1

dS =
kqc
4π

∫
S1

∫
S1

Ga(r, r
′)dS ′dS(1 + o(1)). (7.15)

which leads us, from (7.13), to the approximate expressions of pc and qc,

pc =

∫
S1
pi (r)dS/

∫
S1
dS

1 + ik
4π
[(rc(gc)− g) + iklc]

k
∫
S1

∫
S1

Ga(r,r′)dS′dS∫
S1

dS

,

qc = ikpc[(rc(gc)− g) + iklc], (7.16)

where pi is the field radiated in presence of a plane without perturbation.
Therefore, we can use the expression of qc in (4.6), and obtain, for the field diffracted

by a shallow cavity above the plane,

p(r′)− pi (r
′) =

−k

4π
qc

∫
S1

Ga(r, r
′)dS (1 + o(1)), (7.17)

in particular for the far field.

Remark 12. In the case of a cavity Ω2 filled with a homogenous material of wavenumber
k2, and the conditions of continuity p|z=0− = p|z=0+ and ∂zp|z=0− = a2∂zp|z=0+, we can
consider Gb with k2 instead of k, and g2 = a2kg/k2 in place of g. In this case, we have
q1|z=0− = (∂zp(r

′)− ik2g2p(r
′))|z=0− = a2(∂zp(r

′)− ikgp(r′))|z=0+ = a2q1|z=0+.
We can then modify the integral equations and obtain

qc|z=0− = ik2pc[(rc(g
′
c)− g2) + ik2lc], qc|z=0− = a2qc|z=0+ ,

p(r′)− pi (r
′) =

−k

4π
qc|z=0+

∫
S1

Ga(r, r
′)dS(1 + o(1)), (7.18)

when ( ∂
∂n

− ik2g
′
c)p|S2 = 0. Generally, the relation between g′c and gc (surface impedance

in free space) is g′c = a2gc/k2, and thus,

qc|z=0+ = ipc[k(rc(gc)− g) + ik2
2lc/a2]. (7.19)

Remark 13. A similar demonstration can be used for a small protuberance Ω2 of sur-
face S2 above the plane. By the argument of analytic continuation, we consider that the
radiation is equivalent to a fictitious q1 over S1. In this case, (7.17) applies with

− qc

∫
S1

∫
S2

Ga(r, r
′)dS ′dS = −ikpc(

∫
S2

gc

∫
S2

Ga(r, r
′)dS ′dS−

−
∫
S1

g

∫
S2

Ga(r, r
′)dS ′dS)− k2pc

∫
Ω2

∫
S2

Gst(r, r
′)dV + o(1),∫

S1

pi (r)dS − pc

∫
S1

dS =
kqc
4π

∫
S1

∫
S1

Ga(r, r
′)dS ′dS(1 + o(1)), (7.20)
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and,

pc =

∫
S1
pi (r)dS/

∫
S1
dS

1 + ik
4π
[(r′c(gc)− g)− ikl′c]

k
∫
S1

∫
S1

Ga(r,r′)dS′dS∫
S1

dS

,

qc = ikpc[(r
′
c(gc)− g)− ikl′c] , r′c(gc) ∼ rc(gc), l

′
c ∼ lc. (7.21)

Let us notice that +iklc is replaced by −ikl′c when we compare with (7.16).

Remark 14. To our knowledge, our approximate expressions are original, but a similar
low frequency analysis could also be done with the integral equations given in [1].

7.3.2 Validation in the case of a small cylindrical cavity with impedance wall

For the validation, we choose to verify the expression of the impedance on the aperture,
given, from our results (7.13)-(7.15), by

ηa =

∫
S1

∂p
∂z
dS/

∫
S1
dS

ikpc
=

qc
ikpc

+ g = rc(gc) + iklc ∼
∫
S2
gcdS∫

S1
dS

+ ik

∫
Ω2

dV∫
S1
dS

, (7.22)

in some particular case with well-tabulated results.
For this, we consider the delicate problem of a cylindrical cavity of radius a and depth

d with an imperfectly reflective surface, characterized by impedances gcw on the wall and
gce on the bottom, with ka = o(1) and d/a = O(1).

So, from (7.22), we have,

ηa ∼
gceπa

2 + gcw2πad

πa2
+ ik

πa2d

πa2
= gce +

2gcwd

a
+ ikd, (7.23)

while, from the modal expansion of the field [22],

ηm =
∂p
∂z

ikp
|S1 ≃

α1

k

(1 +
gce−α1

k

gce+
α1
k

e−2iα1d)

(1− gce−α1
k

gce+
α1
k

e−2iα1d)
∼ gce + iα2

1

d

k
≃ gce +

2gcwd

a
+ ikd,

− ikagcwJ0(ξ1) + ξ1J1(ξ1) = 0, α2
1 = k2 − (

ξ1
a
)2 ≃ k2 − 2ikgcw

a
. (7.24)

As expected for a small cavity, ηm perfectly recovers ηa, and the expression (7.22) is
validated.

Remark 15. For a perfectly rigid small cavity, we have gc = 0 and thus ηa = iklc, and
we recover the result given in [14, equ.(3)-(6)].

Remark 16. Similar developments can be made in electromagnetism, from the use of
tensors for the expression of potentials (see appendix E). In this case, for the E (electric)
and H (magnetic) fields on the aperture of a small cavity, we derive the approximations,

− Z0(Jc ∧ ẑ )ge +Mc ∼ Z0(Jc ∧ ẑ )((

∫
S2
gcdS∫

S1
dS

− ge) + ik

∫
Ω2

dV∫
S1
dS

),

Mc = −(ẑ ∧ E)|S1 , Jc = (ẑ ∧H)|S1 , (7.25)
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when impedance boundary conditions are considered on the perturbated plane following

E − n̂(n̂E)|S0\S1 = Z0g
e(n̂ ∧H)|S0\S1 , E − n̂(n̂E)|S2 = Z0g

e
c(n̂ ∧H)|S2 , (7.26)

where n̂ is the outward normal to the surface, Z0 is the free space impedance [3, 4],[12].
From (7.25), the problem for a shallow cavity is then reduced to the one of the scattering

by a patch of relative impedance (
∫
S2

gcdS∫
S1

dS
gec + ik

∫
Ω2

dV∫
S1

dS
) on S1 inserted in an impedance

plane. Equations, similar to (4.6) and (7.6), can be then derived.

8 Conclusion

We have developed novel integral equations which permit to simplify the calculus of the
field scattered by a cavity in an impedance plane. For this, a new Green’s function is used
for the expression of the field in the cavity which leads to reduce the number of unknowns.
Moreover, a particular attention is paid to the uniqueness of the solution. In the case
of a small cavity, our equations are detailed and developed in a new form. In this case,
analytical results are derived and our expression for approximate aperture impedance is
validated.

A
∫
S2(open)

Gb(r, r
′)µ(r)dS|r′∈Ω2∪Ωi

2
= 0 implies µ ≡ 0

This appendix concerns the study of the solution µ(r) of

P(r′) = 0 in Ω ≡ Ω2 ∪ Ωi
2, (A.1)

where P(r′) = k
4π

∫
S2
Gb(r, r

′)µ(r)dS, and the proof that µ(r) (in some functions class)

vanishes. S2 is the surface of an open cavity in the plane z = 0, and the domain Ωi
2 (resp.

Si
2) is the symmetric of Ω2 (resp. S2) relatively to z = 0.

A.1 µ ≡ 0 in the cases g = 0 (Neumann) or g → ∞ (Dirichlet)

In the respective cases g = 0 (Neumann boundary condition) and g → ∞ (Dirichlet
boundary condition), we have

Gb(r, r
′)|g=0 = [G0(r − r′) +G0(r − r′im)]

Gb(r, r
′)|g→∞ = [G0(r − r′)−G0(r − r′im)] (A.2)

and thus,

P(r′)|g=0 =
k

4π

∫
∂Ω

G0(r − r′)Ξ0(r)dS,

P(r′)|g→∞ =
k

4π

∫
∂Ω

G0(r − r′)Ξ∞(r)dS (A.3)
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where Ξ0(rim) = Ξ0(r) = µ(r) and Ξ∞(rim) = −Ξ∞(r) = −µ(r). We assume that µ is a
function, piecewise continuous (except possibly for singularities of µ at the edge of ∂Ω),
so that P is continuous on ∂Ω. We can then use a proof similar to the ones given by
Colton and Kress in [20] to prove that µ(r) ≡ 0.

The potential P vanishes in Ω, and thus, by continuity, on ∂Ω. Moreover, P satisfies
the Helmholtz equation and the Sommerfeld radiation condition at infinity in R3. Hence
by Rellich’s uniqueness theorem generalized by Levine for non smooth domain [15], P(r′)
also vanishes outside Ω. We can then conclude, from the discontinuity property of the
normal derivative of the single layer potential [20],

∂P(r′)

∂n
|+ − ∂P(r′)

∂n
|− = −Ξ(r′), (A.4)

at any non singular points of S2, where Ξ is Ξ0 (resp. Ξ∞) when g = 0 (resp. g → ∞).
that we have Ξ ≡ 0 and thus µ ≡ 0.

A.2 A proof that µ ≡ 0 for g ̸= 0, |g| < ∞
In the definition taken when g ̸= 1 in section 3.2.2, we notice that Gb(r, r

′)|g=v =
Ga(rim, r

′
im)|g=−v, and the problem is then equivalent to a boundary value problem in

the upper half-space, concerning a perturbation in relief (image of the cavity) on a plane
of impedance −g, with a field u(r′) = P(r′im) vanishing inside and on the surface of the
perturbation, and verifying the Sommerfeld conditions at infinity. For Re(−g) > 0, we
can use for this problem the uniqueness theorem of Levine [15, sect.7] and the disconti-
nuity property of the normal derivative of the single layer potential [20], and deduce that
µ ≡ 0.

For Re(g) > 0, this demonstration is no more valid, and we develop here a more
general proof which uses that S2 is an open surface.

A.2.1 Definition of the function P1

For this, we begin to define new functions P0 and P1, and we write,

P(r′) = (P0 + 2igP1)

P0(r
′) =

k

4π

∫
S2

(G0(r − r′) +G0(r − r′im))µ(r)dS,

P1(r
′) =

k

4π

∫
S2

Vb(r − r′im)µ(r)dS (A.5)

where, from (3.8), the function Vb(r) = −eikgzJ−g(ρ, z) satisfies

∂Vb(r − r′im)

∂z
=

e−ik|r−r′im|

|r − r′im|
+ ikgVb(r − r′im)

= kG0(r − r′im) + ikgVb(r − r′im). (A.6)
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with r′im ≡ (x′, y′,−z′). We notice that Vb(r) is regular for z < 0, and has a weak
singularity, like ln ρ, at ρ = 0 for z ≥ 0. Thus, the potential P1(r

′) is an analytic function
in R3\Ωc, where Ωc is the upper part of the cylinder along z-axis bounded by Si

2, which
is the image of S2.

A.2.2 A problem for P1 equivalent to the problem P ≡ 0

Since P vanishes in Ω, and P0(r
′
im) = P0(r

′), we can write that P1(r
′
im) = P1(r

′) in this
domain. So, we have

P1(r
′) =

k

4π

∫
S2

Vb(r − r′im)µ(r)dS

P1(r
′
im) = P1(r

′), r′ ∈ Ω ≡ Ω2 ∪ Ωi
2

(∆ + k2)P1 = 0 in R3\Ωc, (A.7)

where S2 is an open surface. This implies reciprocally that P = 0 in Ω. Indeed, from
(A.6), we have

∂z′P1(r
′)− ikgP1(r

′) =
k

4π

∫
S2

kG0(r − r′im)µ(r)dS,

− ∂z′P1(r
′
im)− ikgP1(r

′
im) =

k

4π

∫
S2

kG0(r − r′)µ(r)dS. (A.8)

Adding both equations and using that P1(r
′
im) = P1(r

′), ∂z′(P1(r
′)−P1(r

′
im)) vanishes

and P1(r
′
im) + P1(r

′) = 2P1(r
′), and we conclude, by definition of P , that P = 0 in Ω.

A.2.3 A proof that µ ≡ 0, by the analysis of the singularities at the ends of
S2

The singularities of the field at the ends of S2, i.e. the singular behaviour in vicinity of
the curve C1, depends on the geometry. For this, we denote n̂0, the unit vector, normal
to C1 at r0 and orthogonal to the normal n̂ to S2, and ĉ the unit vector tangent to C1, so
that (ĉ, n̂, n̂0) is an orthonormal basis (figure 4), and (ρ, φ) the cylindrical coordinates
associated to (n̂, n̂0), with ρ cosφ = n̂0.(r − r0), ρ sinφ = −n̂.(r − r0). We also denote ŷ
the unit vector perpendicular to ẑ and to ĉ so that (ĉ, ŷ, ẑ) is an orthonormal basis.

Let us consider S ′
2, a part of S2 bounded by an analytic arc C ′

1 of C1, and consider to
simplify, without losing generality, that the function µ(r) satisfies

µ(r) = µf (r) + µa(r)

µf (r) =
∑
p≥1

apJαp(kρ),

µa(r) =
∑
m≥0

bmρ
m, (A.9)

on S ′
2 where the αp are not entire numbers, αp < αp+1, α1 > −1, a1 ̸= 0 except if

µf ≡ 0, and Jν(z) = ( z
2
)ν
∑

k≥0
(−z/4)k

k!Γ(ν+k+1)
is the bessel function of order ν [19]. The terms
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Figure 4: definitions of unit vectors on the curve C1 defining the aperture

with powers of ln ρ could be considered in the method but are omitted for simplification.
Thereafter, we prove that the conditions (A.7) on P1 imply the vanishing of µf and µa

on S ′
2, and that, by the continuation principle through a hole and the nullity of P in Ω2,

µ ≡ 0 on S2. To simplify the analysis, we will only detail the demonstration in the case
where (ŷ.n̂0) = cosΦ′ ̸= 0.

µa = 0 on S ′
2 when ŷ.n̂0 = cosΦ′ ̸= 0 on C ′

1

Let us consider the analytic part of µ in vicinity of C ′
1 and the singularities of P1

induced by it. Since we have

(∂z(∂yP1)(r)− ikg(∂yP1)(r))|r=r′im
= ∂y

k

4π

∫
S2

kG0(r − r′)µ(r)dS, (A.10)

a singularity appears (see [23] or appendix B), following

∂y
k

4π

∫
S2

kG0(r − r′)µ(r)dS = −k cosΦ′

2π
µ(r0) ln |r′ − r0|+O(1), (A.11)

as r′ tends normally to r0 ∈ C ′
1. This implies, from ∂yP1(r

′) = O(1), that

(∂z(∂yP1(r))|r=r′im
= −k cosΦ′

2π
µ(r0) ln |r′ − r0|+O(1) (A.12)

Considering the parity of P1(r
′) (see (A.7)), and thus of ∂yP1(r

′), ∂z∂yP1 is odd with
respects to the plane z = 0, and (A.12) implies that µ vanishes on C ′

1 so that b0 = 0 in
(A.9). In the same manner, the case of higher order terms of µa, b1ρ

1, b2ρ
2, ... can be

considered successively with higher order y-derivatives of P1(r
′), so that bm = 0, m ≥ 0.
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µf = 0 on S ′
2 for arbitrary cosΦ′ on C ′

1

Let us consider the fractional part µf of µ, and the (single layer) potential induced (or
radiated) by it, which corresponds, to the expression of ∂zP1(r) − ikgP1(r) presented in
(A.8). S ′

2 is assumed to simplify with null curvature, and the results obtained in appendix
B are used. Under this hypothesis, the potential has a fractional part of order 1 + α1

(∼ ρ1+α1 as ρ → 0), which is thus the fractional order of ∂zP1. We then deduce that P1

has a fractional order 2 + α1. Considering the results in appendix B, the term Jα1(kρ) of
µf radiates, like 4π

k sin(νπ)
J1+α1(kρ

′) cos((1+α1)φ
′)+O(J3+α1(kρ

′)), which does not contains

ρ2+α1 terms in its expansion, and thus the order 2 + α1 of P1 comes from the next term
a2Jα2(kρ) in the expansion of µf . This implies α2 = α1 + 1, and a2 ̸= 0 if a1 ̸= 0.
Consequently, when a1 ̸= 0, we can write,

k

4π

∫
S2

kG0(r − r′)µ(r)dS =

=
1

sin(α1π)
(a1J1+α1(kρ

′) cos((1 + α1)φ
′)− a2J2+α1(kρ

′) cos((2 + α1)φ
′))

+O(J3+α1(kρ
′)) +O(J1+α3(kρ

′)) + entire function of ρ′ (A.13)

as ρ′ → 0, with ρ′ cosφ′ = n̂0.(r
′ − r0), ρ

′ sinφ′ = −n̂.(r′ − r0), α3 > α2 = α1 + 1. Thus,
from (A.8), we have

(∂zP1(r))− ikgP1(r))|r=r′im

=
1

sin(α1π)
(a1J1+α1(kρ

′) cos((1 + α1)φ
′)− a2J2+α1(kρ

′) cos((2 + α1)φ
′))

+O(J3+α1(kρ
′)) +O(J1+α3(kρ

′)) + entire function of ρ′ (A.14)

Therefore, from (A.7), and the parity of P1 and ∂zP1, we derive that

a1 cos((1 + α1)Φ
′ + φ) = −a1 cos((1 + α1)Φ

′ − φ),

a2 cos((2 + α1)Φ
′ + φ) = a2 cos((2 + α1)Φ

′ − φ). (A.15)

Consequently, when a1 ̸= 0, we can write,

cos((1 + α1)Φ
′) = 0

sin((2 + α1)Φ
′) = 0 (A.16)

This implies cosΦ′ = 0, and α1 is entire, which is impossible by definition. We then
deduce that the first order coefficient a1 of µf is null, which induces, by definition, that
µf ≡ 0.

µ vanishes on S ′
2 implies µ ≡ 0
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From the previous results, it exists a subdomain S ′
2 of S2 where µ = 0, that we can

substract of the support of µ, assuming without losing generality, that | cosΦ′| ̸= 1 along
C ′

1. In this case, we can use the continuation principle through the hole S ′
2, and the field

P(r′), null in Ω2, also vanishes outside the cavity below the plane z = 0.
Noticing the regularity of P1(r

′) for z′ < 0, and thus the continuity of the normal
derivative of P1(r

′) through S2, we can apply the discontinuity property of the normal
derivative of single-layer potentials with free space Green’s function [20],

∂P(r′)

∂n
|+ − ∂P(r′)

∂n
|− = −µ(r), (A.17)

at any non singular points of S2, which implies, from the vanishing of the left side, that
µ ≡ 0.

A.2.4 Elements of proof for the particular case ŷ.n̂0 = cosΦ′ = 0 on C1

From the previous analysis, the fractional part µf vanishes for any Φ′, and we can then
assume that µ is analytic. In the case where ŷ.n̂0 = cosΦ′ = 0 on C1, we choose to study
the function,

P ′(r′) = (∂z′ − ikg)P(r′) =
k

4π

∫
S2

G′
b(r, r

′)µ(r)dS (A.18)

where, from (3.26),

G′
b(r, r

′) = ∂z′(G
0(r − r′) +G0(r − r′im))− ikg(G0(r − r′)−G0(r − r′im))

= (−∂z − ikg)(G0(r − r′)−G0(r − r′im)) (A.19)

From G′
b(r, r

′) = −G′
b(r, r

′
im), we have P ′(r′) = −P ′(r′im) . The function P ′ satisfies the

Helmholtz equation in R3\Ω, with Sommerfeld conditions at infinity. Since P = 0 in Ω,
P ′ vanishes, like its derivatives, in Ω. Let us show that it is also the case for P ′ outside
Ω, then for P , and thus for µ.

Since P ′ vanishes along the plane z = 0, (ẑ.grad)2nP ′ = 0 along C1, n ∈ N . Using inte-
gration by parts and continuity for odd derivatives of P ′, we derive that (ẑ.grad)2n+1P ′ = 0
along C1, n ∈ N . We then consider to simplify that the surface Sc of the cylinder Ω′

c

along z-axis, defined with a section C1, does not have common points with S2, except
on C1, and that we have no essential sigularity. We then deduce that P ′ vanishes on Sc.
From the first Green’s theorem and the properties of P ′, we have

Re(

∫
R3\Ω′

c

−ik|P ′(r)|2 + |gradP ′(r)|2

−ik
dV ) = lim

a→∞

∫
r=a

|P ′(r)|2dS, (A.20)

Since | arg(ik)| ≤ π/2, both members have opposite signs, and thus vanish. We then
derive, from Rellich’s theorem and continuation principle [12], that P ′(r) = 0 in R3\Ω.
Since P and all z-derivatives of P ′ vanishes on S2, we derive that P = 0 below S2, and,
by continuation principle, everywhere below the plane z = 0.

We can then use the discontinuity property of the normal derivative of single layer
potential (A.17), and deduce that µ ≡ 0.
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B Behaviour of single layer potentials on open sur-

faces

Let S be an open analytic, orientable surface in three-dimensional space bounded by a
Jordan curve C, and C ′ an arc belonging to it. Let r′ and r be two points, and µ(r) an
analytical function defined for all r ∈ S except possibly for a singularity on the edge C ′.
We study the behaviour of single layer potentials

U0(r
′) =

∫
S

µ(r)

|r − r′|
dS, Uk(r

′) =

∫
S

µ(r)e−ik|r−r′|

|r − r′|
dS (B.1)

B.1 When µ(r) = O(1) on C ′

If µ(r) is finite on C ′, we can write, from Rolf Leis [23], in vicinity of C ′

grad(U0(r
′)) = −

∫
S

µ(r)n̂∂n
1

|r − r′|
dS +

∫
S

gradS(µ(r))

|r − r′|
dS+

+ 2

∫
S

n̂Hµ(r)

|r − r′|
dS −

∫
C

n̂0µ(r)

|r − r′|
dc (B.2)

where n̂0 is a unit vector, normal to C and orthogonal to the normal n̂, gradS is the
surface gradient, H is a function depending on the characteristics of the surface. The line
integral becomes logarithmically singular, while the other surface integrals are regular.
The singularity, as r′ /∈ C → r0, r0 being the projection of r′ on C ′, can be described by∫

C

n̂0µ(r)

|r − r′|
dc = −2n̂0(r0)µ(r0) ln |r′ − r0|+O(1) (B.3)

where ĉ is the unit vector, tangent to C ′ at r0, and (ĉ, n̂, n̂0) is an orthonormal basis
[23]. More generally we notice from [23], that analytic µ does not induce singularities of
fractional order in the expansion of U0 and Uk.

B.2 When µ(r) is of fractional order

In the case of µ(r) of fractional order (with fractional power of |r − r0| near r0 ∈ C ′), it
is possible to analyze the fractional part of the field, letting the curvature of the edge C ′

tending to 0, and µ(r) depending only on the distance ρ to the edge. In this case, we can
write,

Uk(r
′) ∼ −iπ

∫
L

µf (ρ)H
(2)
0 (k|ρ− ρ′|)dρ

∼ −i

∫ +i∞

−i∞

∫ ∞

0

µf (ρ)e
−ikρ cosαdρe−ikρ′ cos(α−φ′)dα, (B.4)

when ρ′ → 0, ρ′ denoting the radial distance to the edge of the point r′, with ρ′ cos(φ′) =
n̂0(r

′ − r0), ρ
′ sin(φ′) = −n̂(r′ − r0), r0 ∈ C ′, and µf (ρ) = µ(r).
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So, for µf (ρ) = Jν(kρ) ∼ (β
k
)−ν limβ→0 Jν(βρ), ν = α1 > −1, ν ̸= 0, 1, 2, ..., we

obtainUk(r
′), from [24, eq. 6.611.1] and [19, eq. 9.1.22], following

Uk(r
′) ∼ − ie−i(1+ν)π/2

k 2ν

∫ +i∞

−i∞

1

(cosα)1+ν
e−ikρ′ cos(α−φ′)dα

∼ − ie−i(1+ν)π/2

k 2ν

∫ +i∞

0

(
1

(cos(α + φ′))1+ν
+

1

(cos(α− φ′))1+ν
)e−ikρ′ cosαdα

∼ − i 4e−i(1+ν)π/2

k
cos((1 + ν)φ′)

∫ +i∞

0

ei(1+ν)αe−ikρ′ cosαdα

∼ 4π

k sin(νπ)
cos((1 + ν)φ′)(J1+ν(kρ

′) + an entire function of ρ′). (B.5)

Then, using the discontinuity property of the normal derivative of Uk through S [20],
and 2(1 + ν)J1+ν(kρ

′)/kρ′ = Jν(kρ
′) + J2+ν(kρ

′) [19], we can rewrite (B.5) following

Uk(r
′) =

4π

k sin(νπ)
J1+α1(kρ

′) cos((1 + α1)φ
′) +Da(r

′) +O(J3+α1(kρ
′)) (B.6)

where Da(r
′) is an entire function of ρ′.

Remark 17. In the case of logarithmic behaviour, we can let µ(ρ) = 1
2
ln(ρ

2
) = limν→0+ ∂ν(Kν(ρ)/Γ(ν)), and

derive, from [24, eq. 6.611.3],

Uk(p) ∼ −i

∫ +i∞

−i∞
∂ν(

Γ(1− ν) sin να

sinα
)|ν=0e

−ikρ′ cos(α−φ′)dα,

∼ −i

∫ +i∞

−i∞
(γα +

α

sinα
)e−ikρ′ cos(α−φ′)dα, γ = .577...

∼ −iγφ′
∫ +i∞

−i∞
e−ikρ′ cosαdα + o(ln ρ) = 2γφ′K0(ikρ) + o(ln ρ). (B.7)

Remark 18. Let t0(r0) = an̂0(r0)+bn̂(r0) when t0n̂0 ̸= 0. Considering higher derivatives
of U0, we can write

(t0.grad)
n(U0(r

′)) = −
∫
S

(t0.gradS)
n−1(µ(r))(t0.n̂)

∂

∂n
(

1

|r − r′|
)dS+

+ 2

∫
S

(t0.n̂)H(t0.gradS)
n−1(µ(r))

|r − r′|
dS +

∫
S

(t0.gradS)
n(µ(r))

|r − r′|
dS−

− t0

∫
C

(t0.n̂0)(t0.gradS)
n−1(µ(r))

|r − r′|
dc+Rn (B.8)

when (n̂0gradS)
j(µ(r0)) = 0 (or (t0(r0)gradS)

j(µ(r0)) = 0 when t0n̂0 ̸= 0) on C ′ for
j < n− 1, and (n̂0gradS)

n−1(µ(r0)) = O(1), with, in this case, Rn which is continuous on
C ′. This result also applies if we replace U0 by Uk since the behaviour of highest rank is
the same for Uk and U0.
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C About
∫
S1
Gb(a)(r, r

′)µ(r)dS = 0 on the aperture

Let us show that

Ub(a)(r
′) ≡

∫
S1

Gb(a)(r, r
′)µ(r)dS = 0 on S1 (C.1)

implies µ(r) ≡ 0, when µ(r) = A0 + o(1) as r → rc ∈ ∂S1 ≡ C1, A0 is a constant.

C.1 The case with Gb

From the analysis of Rolf Leis (see [23] or appendix B), µ(r) = A0 + o(1) (as r → rc ∈
∂S1 = C1) induces a singularity of derivative in vicinity of C1 of the form A0 ln |r − rc|.
This implies, from (C.1) (i.e. Ub(r

′)|S1 = 0), that A0 = 0.
We then choose to define the following functions u and w,

u(r′) =
−k

4π

∫
S1

Gb(r, r
′)µ(r)dS with u(r′) = 0 on S1,

w(r′) = (
∂.

∂z′
− ikg)u(r′) =

−2k

4π

∫
S1

(
∂.

∂z′
)G0(r − r′)µ(r)dS, (C.2)

where we have used that

(
∂.

∂z′
− ikg)Gb(r, r

′)

= (
∂.

∂z′
)(G0(r − r′) +G0(r − r′im))− ikg(G0(r − r′)−G0(r − r′im)). (C.3)

Considering the property of the double layer potential with free space Green’s function
G0, and F the radiation pattern (or scattering diagram) of w, we can write

w(r′) = −µ(r′) = O(1) on S1, w(r
′) = 0 on S0\S1,

w(r′) =
e−ik|r′|

|r′|
(F (

r′

|r′|
) + o(1)) when r′ → ∞. (C.4)

Moreover, we have, fromLeis’s second theorem [23],

grad(w(r)) = o(1/|r − rc|), (C.5)

when r → rc ∈ C1, and, from u(r) = 0 on S1,

lim
z→0−

∂w(r)

∂z
= (k2 − ∂2

∂x2
− ∂2

∂y2
)u(r)− ikgw(r) → −ikg w(r) on S1. (C.6)

Thus, we can apply the Green’s first theorem on the domain z < 0, and we obtain

Re (

∫
z≤0−

−ik|w(r)|2 + |gradw(r)|2

−ik
dV ) = (

∫
z=0−

Re(g)|w(r)|2dS+

+Re (

∫ 2π

0

∫ π

π/2

|F (Θ, ϕ)|2 sinΘdΘdϕ). (C.7)
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For Re(g) ≥ 0 and | arg(ik)| ≤ π/2, the left-hand term is ≤ 0, while the right-hand term
is ≥ 0, and thus both terms vanish. So, we have,

w(r) = 0 as z < 0, when | arg(ik)| < π/2,Re(g) ≥ 0,

w(r) = 0 as z = 0−, when | arg(ik)| = π/2, Re(g) > 0, (C.8)

which implies in these cases, from w(r′) = −µ(r′) on S1, that µ vanishes.
In the case g = 0, Gb can be replaced by 2G0 in the definition of u, and the demon-

stration of Colton and Kress [20, sect. 2] can be directly used to conclude that µ ≡ 0.

Remark 19. the same property can be deduced for Reg < 0, except along the branch-cut
of Gb with Re(ik cos θ1)= 0, g = sin θ1. For this, we can directly use the first Green’s
theorem with u instead of w, and deduce that µ ≡ 0.

C.2 The case with Ga

If we consider in the definitions of u, Ga instead of Gb, and the domain z > 0 instead of
the domain z < 0, we can directly use the first Green’s theorem with u instead of w, and
deduce that µ(r′) = 0 when Re(g) > 0 or g = 0.

D On some analytical applications for the 2D case

Let us consider our developments in [11], for a scatterer illuminated by a plane wave
coming from the direction φ′ = φ′

◦, for the geometry given in figure below,

Figure 5: impedance skew step geometry

Impedance boundary conditions are assumed,

(
∂

∂n
− ikg1)p|L1 = 0, (

∂

∂n
− ikg)p|L± = 0, (D.1)
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where L1 is the strip of length ∆, between both singularities, and the L± are the half
planes going to infinity. From [11], the diffracted field given by,

ud(φ
′) =

−e−iπ/4−ikρa

√
2πkρa

[F (φ′)] +O(1/(kρ)3/2), (D.2)

can be approximated, when |k∆| ≪ 1, with

F (φ′) ∼ 2D0 ik∆cosφ′
◦ cosφ

′

(cosφ′
◦ + sin θ+)(cosφ′ + sin θ+)

(−g cosΦa − sinΦa sinφ
′+

+ g1 −
ik∆

4
sin(2Φa)) +

C0(cosφ
′ − g) cosφ′

◦
(cosφ′

◦ + g)(sinφ′ + sinφ′
◦)
(e−2ik∆sinΦa cosφ′ − 1) (D.3)

where

D0 =
1 + (iB0/π) sinφ

′
◦ sinΦa

1 + (iB0/π)(g1 − g cosΦa)

C0 = 1 + (iB0/π)(sinΦa(sinφ
′
◦ + sinφ′)/2)

B0 = −k∆(ln(k∆/2) + γ0 − 1 + iπ/2), γ0 ≈ .577, (D.4)

Figure 6: 2D cavity geometry

From the results of our present paper, it is possible to consider a general curved lines
Lc instead of the straight line L1, with ( ∂

∂n
− ikgc)p|Lc = 0, if we write

g1 ∼
∫
Lc

gc dl/∆+ ik(S+ − S−)/∆ (D.5)

where S+ is the total surface of the cavity under the straight strip L1, and S− is the total
surface of the protuberences above L1. Let us notice that, in the above approximated
expression of F , the first order in k is exact.
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E The Green’s tensors for an impedance plane in

electromagnetism

In our method, a key point is the use of the ’below’ Green’s functions in the cavity
which derives from our solution for an arbitrary impedance plane (passive or active). In a
similar manner, an extension of our present work to electromagnetism needs the Green’s
tensors for an arbitrary impedance plane, that we now develop from [3]-[4]. For this, the
electromagnetic field (E,H) that satisfies the Maxwell equation,

curl(E) = −ik(Z0H)−M, curl(Z0H) = ikE + Z0J (E.1)

above the plane, and the impedance boundary conditions,

ẑ ∧ E|z=0 = ge(ẑ ∧ (ẑ ∧ (Z0H)))|z=0, (E.2)

or
(∂z − ikge)Ez|z=0 = 0, (∂z − ik/ge)Hz|z=0 = 0, (E.3)

is considered.

E.1 The field radiated by bounded sources J and M in free space

The incident field, radiated by the sources J and M in free space, is given by

Einc = curl(G ∗M) +
i

k
(grad(div(.)) + k2)(G ∗ Z0J)

=
1

8πk2
(−M ∗ [De,i(r

′, r)] + Z0J ∗ [Fh,i(r
′, r)])

Z0Hinc = −curl(G ∗ Z0J) +
i

k
(grad(div(.)) + k2)(G ∗M)

=
1

8πk2
(Z0J ∗ [Dh,i(r

′, r)] +M ∗ [F e,i(r
′, r)]) (E.4)

where G = − e−ik|r|

4π|r| , |r| =
√

x2 + y2 + z2, and ∗ is the convolution product.

E.2 The field scattered by the impedance plane

E.2.1 The tensors

Developing the expressions of potentials given in [3]-[4] for the scattered field (Es, Hs),
we can write, when M = Mr′δ(r − r′) and J = Jr′δ(r − r′),

Es(r) = −ikcurl(Hs ẑ) + (grad(div(.)) + k2)(Esẑ)

=
1

8πk2
([Fhe(r, r

′)].Z0Jr′ − [Dhe(r, r
′)].Mr′)

=
1

8πk2
(Z0Jr′ .[Fhe(r

′, r)]−Mr′ .[Deh(r
′, r)])

=
1

8πk2
(Z0Jr′ .[

1

ik
curlr′([Deh(r

′, r)])]−Mr′ .[Deh(r
′, r)]) (E.5)
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and
Z0Hs(r) = ikcurl(Es ẑ) + (grad(div(.)) + k2)(Hs ẑ)

=
1

8πk2
([Deh(r, r

′)].Z0Jr′ + [F eh(r, r
′)].Mr′)

=
1

8πk2
(Z0Jr′ .[Dhe(r

′, r)] +Mr′ .[F eh(r
′, r)])

=
1

8πk2
(Z0Jr′ .[Dhe(r

′, r)] +Mr′ .[
1

ik
curlr′([Dhe(r

′, r)])] (E.6)

where Fhe(,eh)(r
′, r) and Deh(,he)(r

′, r) are dyadic tensors. In these notations, we have

D.[â b̂] = (D. â) b̂ , [â b̂].D = â ( b̂ .D) and

[G(r, r′)] → [G(r′, r)] if (x, y, z) ↔ (x′, y′, z′) and (x̂, ŷ, ẑ) ↔ (x̂′, ŷ′, ẑ′). (E.7)

The tensors verify the impedance boundary conditions,

ẑ ∧ [(Dhe +Dh,i)(r, r
′)]|z=0 = −ge(ẑ ∧ ẑ ∧ [(F eh + F e,i)(r, r

′)]|z=0,

ẑ ∧ [(Fhe + Fh,i)(r, r
′)]|z=0 = ge(ẑ ∧ ẑ ∧ [(Deh +De,i)(r, r

′)])|z=0, (E.8)

and can be written,
Fhe(,eh) ≡ −B(Bh(,e)) +A(Ae(,h))

Dhe(,eh) ≡ B(Ah(,e)) +A(Be(,h)) (E.9)

where
[A(Be(,h))(r, r

′)] =

= [ik(x̂∂x + ŷ∂y + ẑ∂z)(ŷ
′∂x − x̂′∂y)(∂zSe(,h)(r, r

′))+

+ ik3ẑ( ŷ′∂x − x̂′∂y)(Se(,h)(r, r
′))] (E.10)

[B(Ae(,h))(r, r
′)] =

= [ik(x̂∂y − ŷ∂x)(x̂
′∂x + ŷ′∂y + ẑ′ϵ∂z)(ϵ∂zSe(,h)(r, r

′))+

+ ik3(x̂∂y − ŷ∂x)ẑ
′(Se(,h)(r, r

′))] (E.11)

[A(Ae(,h))(r, r
′)] =

= [(x̂∂x + ŷ∂y + ẑ∂z)(x̂
′∂x + ŷ′∂y + ẑ′ϵ∂z)(ϵ∂z2Se(,h)(r, r

′))+

+ k2 ẑ(x̂′∂x + ŷ′∂y + ẑ′ϵ∂z)(ϵ∂zSe(,h)(r, r
′))+

+ k2(x̂∂x + ŷ∂y + ẑ∂z)(ẑ
′)(∂zSe(,h)(r, r

′))+

+ ẑ ẑ′k4(Se(,h)(r, r
′))] (E.12)

[B(Be(,h))(r, r
′)] =

= [− k2(−x̂∂y + ŷ∂x)(x̂
′∂y − ŷ′∂x)(Se(,h)(r, r

′))], (E.13)

with ϵ = −1, x̂′ ≡ x̂, ŷ′ ≡ ŷ , ẑ′ ≡ ẑ. The functions Se(,h) verify the conditions [3],

(∂z − ikge(,h))Se(,h)(r, r
′) = (∂z + ikge(,h))Si(rim, r

′))|z=0, (E.14)
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where gh = 1/ge, rim − r = 2ẑ.r, Si(r, r
′
im) = Si(rim, r

′), and

Si(r, r
′) = (eik|ẑ.(r−r′)|E1(ik(|(r − r′)|+ |ẑ.(r − r′)|)+

+ e−ik|ẑ.(r−r′)|(E1(ik(|(r − r′)| − |ẑ.(r − r′)|)) + 2 ln |ẑ ∧ (r − r′)|)), (E.15)

In a similar manner, the functions Fh,i(e,i) and Dh,i(e,i) can be also expressed like
Fhe(,eh) and Dhe(,eh), if we take Si(r, r

′) in place of Se(,h)(r, r
′) in (E.9)-(E.13) and ϵ = 1

(instead of ϵ = −1).

E.2.2 Expressions of Se(h)(r, r
′) and some properties

The expressions of Se(h)(r, r
′) are given [3]-[4] by,

Se(r, r
′) = (Si(rim, r

′) +
∑

ϵ′=−1,1

−2ge

(ge − ϵ′)
(Vϵ′ + ϵ′Kge))(x− x′, y − y′,−z − z′),

Sh(r, r
′) = (−Si(rim, r

′) +
∑

ϵ′=−1,1

2ge

(ge − ϵ′)
(Vϵ′ + ϵ′Kgh))(x− x′, y − y′,−z − z′), (E.16)

for z ≥ 0, z′ ≥ 0, rim ≡ (x, y,−z). The functions Vϵ′ and Kg, which satisfy the Helmholtz
equation above the plane, are given by

Vϵ′(x, y,−z) = eϵ
′ikz(E1(ik(|r|+ ϵ′z)) + (1− ϵ′) ln ρ),

Kg(x, y,−z) = eikgzJg(ρ,−z), (E.17)

for z ≥ 0, ρ =
√
x2 + y2, g = ge or g = gh, gh = 1/ge.

Let us notice that we have

∂

∂z
Si(rim, r

′) = ik(eik(z+z′)E1(ik(|rim − r′|+ (z + z′)))−

− e−ik(z+z′)(E1(ik(|rim − r′| − (z + z′))) + 2 ln ρ)),

∂2

∂z2
Si(rim, r

′) = −2ik
e−ik|rim−r′|

|rim − r′|
− k2Si(rim, r

′), (E.18)

and

∂

∂z
(Vϵ′ + ϵ′Kg)(x, y,−z) = ikϵ′(Vϵ′ + gKg)(x, y,−z),

∂2

∂z2
(Vϵ′ + ϵ′Kg) = −ikϵ′((ϵ′ − g)

e−ik|r|

|r|
− ik(ϵ′Vϵ′ + g2 Kg)),∑

ϵ′=−1,1

−2ge

(ge − ϵ′)

∂2

∂z2
(Vϵ′ + ϵ′Kge) = 2k2

∑
ϵ′=−1,1

ge(Vϵ′ + ϵ′(ge)2Kge)

(ge − ϵ′)
,

∑
ϵ′=−1,1

2ge

(ge − ϵ′)

∂2

∂z2
(Vϵ′ + ϵ′Kgh) = −4ik

e−ik|r|

|r|
− 2k2

∑
ϵ′=−1,1

(geVϵ′ + ϵ′ghKgh)

(ge − ϵ′)
, (E.19)
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for z ≥ 0. The term ln ρ does not contribute to the field, except to suppress a singularity
due to E1(ik(|r| − |z|)) at ρ = 0 [3]. From the behaviour of Jg, Se(,h)(r

′, r) remains
definite for ge = 1 because Vϵ′=1 +Kge → 0 when ge → 1, while it is singular for ge = −1.

Moreover, when gh = (ge)−1 → ∞, we have ghKgh → − e−ik|r|

ik|r| .

Remark 20. In the case of the radiation of surface sources [12],

M = −n̂ ∧ E δS, J = n̂ ∧H δS, (E.20)

where E and H satisfy the equations of Maxwell, it is important to notice that,

Z0div(J) = Z0divS(n̂ ∧HδS) = −ikn̂.E δS − Z0(n̂ ∧H).vδ∂S,

div(M) = −divS(n̂ ∧ EδS) = −ikZ0n̂.H δS + (n̂ ∧ E).vδ∂S, (E.21)

where n̂ is the normal to S, v is the geodesic normal to ∂S directed outside S, and δS
(resp. δ∂S) is the Dirac surface (resp. line) function (see in particular [25, (A.15) in
appendix of section 6]).

Remark 21. We notice that

curlr([Dhe(,eh)(r, r
′)].Cr′) = ik([F eh(,he)(r, r

′)].Cr′),

curlr([Fhe(,eh)(r, r
′)].Cr′) = −ik([Deh(,he)(r, r

′)].Cr′), (E.22)

and
Dr.[Fhe(,eh)(r, r

′)].Cr′ = Cr′ .[Fhe(,eh)(r
′, r)].Dr,

Dr.[Dhe(,eh)(r, r
′)].Cr′ = Cr′ .[Deh(,he)(r

′, r)].Dr, (E.23)

with Cr′ = cxx̂
′ + cyŷ

′ + cz ẑ
′, Dr = dxx̂+ dyŷ + dz ẑ being two constant vectors.

Remark 22. The tensors also satisfy,

[A(Be(,h))(r, r
′)].Cr′ =

= ik(grad(div( ẑ.)) + k2 ẑ.)((Ct
r′ ∧ ẑ)grad(Se(,h)(r, r

′))

= [ik(x̂∂x + ŷ∂y)( ŷ
′∂x − x̂′∂y)(∂zSe(,h)(r, r

′))+

+ ikẑ( ŷ′∂x − x̂′∂y)(∂z2 + k2)Se(,h)(r, r
′)].Cr′ , (E.24)

[B(Ae(,h))(r, r
′)].Cr′ =

= ikcurl(ẑ(ϵ∂z(C
t
r′grad(Se(,h)(r, r

′)))+

+ cz((∂z2 + k2)Se(,h)(r
′, r)))

= [ik((x̂∂y − ŷ∂x)(x̂
′∂x + ŷ′∂y)ϵ∂zSe(,h)(r, r

′)+

+ (x̂∂y − ŷ∂x)ẑ
′(∂z2 + k2)Se(,h)(r, r

′))].Cr′ , (E.25)
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[A(Ae(,h))(r, r
′)].Cr′ =

= (grad(div( ẑ.)) + k2 ẑ.)(Ct
r′(ϵ∂zgrad(Sϵ

e(,h)(r, r
′)))+

+ cz((∂z2 + k2)Se(,h)(r, r
′)))

= [ϵ∂z2(x̂∂x + ŷ∂y)(x̂
′∂x + ŷ′∂y)Se(,h)(r, r

′)+

+ ∂z(x̂∂x + ŷ∂y)(ẑ
′)(∂z2 + k2)Se(,h)(r, r

′)+

+ ẑ(x̂′∂x + ŷ′∂y)(∂z2 + k2)(ϵ∂zSe(,h)(r, r
′))+

+ ẑẑ′(∂z2 + k2)(∂z2 + k2)Se(,h)(r, r
′)].Cr′ , (E.26)

[B(Be(,h))(r, r
′)].Cr′ =

= ikcurl(ẑ(ik(Ct
r′ ∧ ẑ)grad(Se(,h)(r, r

′))))

= [− k2(−x̂∂y + ŷ∂x)(x̂
′∂y − ŷ′∂x)(Se(,h)(r, r

′))].Cr′ , (E.27)

whereCr′ = Ct
r′ + cz ẑ

′, and, from the Helmholtz equation satisfied by Se(,h),

[B(Be(,h))(r, r
′)].Cr′ =

= − k2((cx∂x + cy∂y)(x̂∂x + ŷ∂y)+

+ (cxx̂+ cy ŷ)(∂z2 + k2))(Se(,h)(r, r
′)). (E.28)
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