On the scattering by a cavity in an impedance plane in 3D : boundary integral equations and novel Green's function

J.M.L. Bernard¹ CEA-DAM, DIF,91297 Arpajon and LRC MESO, CMLA, ENS Cachan 61 av. du Prés. Wilson, 94235, France

Abstract

The problem of the field scattered by a cavity embedded in an impedance (or Robin) plane is considered for the 3D Helmholtz equation in acoustics. Its resolution is more complex than for a scatterer above the plane, in particular because the Green's function for the unperturbed plane has a singular part unsuitable for applications below the plane. It is why the free space Green's function is commonly used in boundary integral equations for the cavity, and three unknowns are necessary. We propose here to use a novel Green's function below the impedance plane, which has the advantage to reduce the number of unknowns, and to simplify the problem. This specific Green's function derives from our recent study for passive and active unperturbed impedance planes. The uniqueness property is studied in passive case. The application to small cavity leads us to new analytical results.

1 Introduction

This paper presents novel integral equations for the field scattered by a cavity embedded in an imperflectly reflective plane with impedance boundary conditions, for the threedimensional Helmholtz equation, and analytical approximations for small cavities.

The development of boundary integral equation methods, in 2D and 3D, for this scattering problem is rather recent [1],[2], seemingly because of specific difficulties due to the representation of the field in the cavity. Indeed, the Green's function G_a , defined as the field of a monopole in presence of the unperturbed impedance plane, which is perfectly adapted to reduce the radiation of an aperture in the plane to an expression depending only on one unknown, has a defect: it has a logarithmic singularity (a logarithmic branch cut) in lower half space that prevents it from being applied below the plane. It is why, until now, the Green's function in free space was preferred for the representation of the field in the cavity. That induces an additional unknown to characterize the radiation of the aperture below the plane, and finally implies three distinct integral equations for three surface field unknowns [1].

To reduce the number of unknowns and simplify the system of integral equations, we here develop an original way, consisting in the definition of a new Green's function that we name the 'below' Green's function G_b . Both functions G_a and G_b satisfy the

¹E-mail address: jean-michel.bernard@cea.fr

impedance condition on the unperturbed surface, but the scattered fields attached to them are respectively regular above and below the plane. They derive from the solution for an arbitrary constant impedance plane (passive or active) given in [3]-[4].

Morever, our system of two novel integral equations has the property of uniqueness of the solution. It is an important point, particularly if we notice that most of the boundary integral equation methods in the related problem of electromagnetism, which use the generalized network formulation [5], are not uniquely solvable at some discrete frequencies [6]. Otherwise, other methods verify uniqueness, in particular the one developed by Chandler-Wilde in acoustics, with a system of three integral equations [1], and the ones used by Xu [6], Asvestas et al. [7], or Wood et al. [8], for perfectly conducting surface in electromagnetism, with a system of two vectorial integral equations. It is worth noticing that, in [6] (see also [9]-[10]), the generalized network formulation is corrected by the image theory, which is equivalent to using a specific Green's function in the cavity that takes account of the plane, while, in [7] and [8], the Green's functions for Dirichlet and Neumann plane are combined in an original way to derive novel boundary integral equations.

This scattering problem can be also analyzed in complex spectral domain in 2D, or by asymptotic methods in 2D and 3D. So, integral equations with smooth kernels in 2D [11], which permit various approximations for large or small polygonal cavity, or asymptotic expressions for a large cavity [12]-[13], have been developed.

The paper is organized as follows. In section 2, we define the properties of the acoustic field, and analyze the uniqueness of the boundary value problem. We present in section 3, the expressions of the Green's functions G_a and G_b , derived from the solution for an unperturbed impedance plane. In section 4, we use the second Green's theorem and give a representation of the field above the plane and in the cavity. We then deduce the system of integral equations in section 5 and show the property of uniqueness in section 6. In section 7, this new system is considered for small cavity and original analytical results are derived. Some particular developments concerning applications to 2D cases, filled cavities, protuberances, and electromagnetism are also given in remarks and appendices.

2 Formulation of the boundary value problem and uniqueness

2.1 Boundary value problem

We consider the pressure field p_s scattered by an imperfectly reflective plane that is perturbed by a cavity (figure 1), when it is illuminated by the incident pressure field p_{inc} , radiated by a bounded source W above the plane and satisfying the Helmholtz equation,

$$(\Delta + k^2)p_{inc} = W \tag{2.1}$$

in R^3 , with $|\arg(ik)| \le \pi/2$.

The unperturbated plane S_0 is defined by z = 0 in Cartesian coordinates (x, y, z). The domain of the cavity with z < 0, and the half-space above the plane with $z \ge 0$, are respectively denoted Ω_2 and Ω_1 . The aperture and the surface of the cavity, respectively denoted S_1 and S_2 , are assumed to be piecewise analytic (with no zero exterior angles, i.e. no points of Ω_2 inside a cusp), bounded by a Jordan curve C_1 .

Figure 1: geometry and definition of the cavity

For any plane wave of incidence angle β composing p_{inc} , the infinite plane, when it is unperturbed, has a reflection coefficient $R(\beta)$ given by,

$$R(\beta) = \frac{\cos\beta - g}{\cos\beta + g},\tag{2.2}$$

so that $p = p_s + p_{inc}$ verifies the impedance (or Robin) boundary condition,

$$\left(\frac{\partial}{\partial z} - ikg\right)p = 0, \tag{2.3}$$

on the plane S_0 , except on the aperture S_1 of the cavity. The term $g = \sin \theta_1$ is denoted the impedance parameter. In (2.3), it is a constant, with $\operatorname{Re}(ik \cos \theta_1) \neq 0$ when $\operatorname{Re}\theta_1 \leq 0$. This condition on g is due to the presence of a cut in the solution for an unperturbed plane [3]-[4], along the path $\operatorname{Re}(ik \cos \theta_1) = 0$ as $\operatorname{Re}\theta_1 \leq 0$. Therefore, the surface waves, which radiate without exponential decay at infinity, can only be considered in the sense of the limit for $\operatorname{Re}(ik \cos \theta_1) = 0^+$ or 0^- when $\operatorname{Re}\theta_1 \leq 0$.

Some general properties are considered for the scattered field in Ω_1 and Ω_2 : (a) p_s , which satisfies the Helmholtz equation

$$(\Delta + k^2)p_s = 0 \quad \text{with} \quad |\arg(ik)| \le \pi/2, \tag{2.4}$$

in $\Omega_1 \cup \Omega_2$, is regular in this domain, except at edges and corners of S_2 where

$$p_s = O(1) \text{ and } \operatorname{grad}(p_s) = O(|r|^{\alpha}), -1 < \alpha \le 0,$$
 (2.5)

as the distance |r| to the edge or corner vanishes [12], and p_s is continuous on the scatterer;

(b) p_s is constituted of outgoing waves, with guiding waves exponentially vanishing at infinity ($\operatorname{Re}(ik\cos\theta_1)\neq 0$ as $\operatorname{Re}\theta_1\leq 0$), and, the field at M, with $r=\overline{OM}$, verifies,

$$p_s = O(e^{-\delta|r|}), \tag{2.6}$$

 $\delta > 0$, as z or $\rho = \sqrt{x^2 + y^2} \to \infty$, z > 0, when $|\arg(ik)| < \pi/2$, and

$$\frac{\partial p_s}{\partial |r|} + ikp_s = o(|r|^{-1}), \ p_s = O(|r|^{-1}), \ (2.7)$$

as $|r| = \sqrt{x^2 + y^2 + z^2} \to \infty$, $z \ge 0$, when $|\arg(ik)| = \pi/2$.

In addition, an impedance boundary condition is assumed on the surface of the cavity,

$$\left(\frac{\partial}{\partial n} - ikg_c\right)p|_{S_2} = 0, (2.8)$$

where \hat{n} is the normal to S_2 directed inside Ω_2 , g_c is a function piecewise analytic on S_2 .

Remark 1. Let us notice that the definitions of the 'acoustic impedance' ($\equiv A_0 p / \frac{\partial p}{\partial n}$, A_0 a constant) generally used in physics [14], and of our 'impedance parameter' ($\equiv \frac{\partial p}{\partial n} / (ikp)$), are different.

Remark 2. The demonstrations concerning the Hölder regularity of the field near surfaces with general boundary conditions like (2.8) are lengthy, and some authors often assume that ikg_c is a positive real number to simplify the development (see the remark of Levine in [15] after lemma 5.2).

2.2 Uniqueness of the solution of the boundary value problem from [15, sect.7]

In [15], Levine develops an uniqueness theorem, i.e. a proof that $p_{inc} \equiv 0$ implies $p \equiv 0$, in the case of a scatterer with impedance boundary conditions. He considers piecewise $C^{(2+\lambda)}$ surface (with no zero exterior angle), $\lambda > 0$, without auxiliary 'edge conditions' at edges or corner points, except that p is continuous. He studies at first bounded scatterers, but he also gives, in section 7 of his paper, the elements to generalize his results to scatterers with infinite boundaries, in particular by the use of Jones' uniqueness theorem [16], that we follow.

We begin to notice first that the conditions given by Levine to apply the Green's first theorem are satisfied: the cavity is piecewise analytic (with no zero exterior angle), the field is countinuous on the scatterer, it satisfies impedance boundary conditions and the conditions (b) at infinity. So, we can write,

$$\int_{\Omega} (p^*(r)\Delta p(r) + \operatorname{grad} p^*(r)\operatorname{grad} p(r))dV = -\int_{S} p^*(r)(\widehat{n}\operatorname{grad}(p(r)))dS + \lim_{a \to \infty} \int_{r=a, z \ge 0} p^*(r)(\frac{\partial p(r)}{\partial r})dS,$$
(2.9)

where $\Omega \equiv \Omega_1 \cup \Omega_2$, $S \equiv S_2 \cup (S_0 \setminus S_1)$, \hat{n} is the inward normal to Ω , and from (2.3)-(2.8),

$$\operatorname{Re}(\int_{\Omega} -ik|p(r)|^{2} + \frac{|\operatorname{grad}p(r)|^{2}}{-ik}dV) = \int_{S_{2}} \operatorname{Re}(g_{c})|p(r)|^{2}dS + \int_{S_{0}\setminus S_{1}} \operatorname{Re}(g)|p(r)|^{2}dS + I_{\infty},$$
(2.10)

where

$$I_{\infty} = \lim_{a \to \infty} e^{-\delta a} = 0 \text{ for } |\arg(ik)| < \pi/2,$$

$$I_{\infty} = \lim_{a \to \infty} \int_{r=a, z \ge 0} |p(r)|^2 dS > 0 \text{ for } |\arg(ik)| = \pi/2.$$
(2.11)

For $\operatorname{Re}(g) \geq 0$, $\operatorname{Re}(g_c) \geq 0$ and $|\operatorname{arg}(ik)| \leq \pi/2$, the left-hand term is negative since $\operatorname{Re}(ik) \geq 0$, while the right-hand term is positive, and thus both terms vanish. Consequently, we have, when $|\operatorname{arg}(ik)| < \pi/2$,

$$p(r) = 0 \text{ in } \Omega, \text{ for } \operatorname{Re}(g) \ge 0, \operatorname{Re}(g_c) \ge 0,$$
(2.12)

and, when $|\arg(ik)| = \pi/2$,

$$p(r) = 0 \text{ on } S, \text{ for } \operatorname{Re}(g) > 0, \operatorname{Re}(g_c) > 0, \partial_n p(r) = 0 \text{ on } S, \text{ for } \operatorname{Re}(g) > 0, \operatorname{Re}(g_c) > 0, \text{ or for } g = g_c = 0.$$
(2.13)

In the latter case, we can use, as suggested by Levine, the Jones' uniqueness theorem [16] for surfaces conical at infinity, when Neumann boundary condition $(\partial_n p(r)|_S = 0)$ is satisfied, which implies $p \equiv 0$ in the entire domain Ω , and thus completes the proof of uniqueness. Let us notice, that another proof has been independently developed in [1] when S is smooth.

3 The 'above' Green's function G_a and the 'below' Green's function G_b

The integral representations of the field with single and double layers potentials generally derive from the use of free space Green's function [12], but more complex Green's functions, verifying particular boundary conditions, can be used. In this latter case, a particular attention must be paid to the regularity of these functions.

So, when we consider a perturbation, due to a scatterer above an impedance plane, we can use the solution G_a for unperturbed case to express the field everywhere, while it is generally not possible for a cavity, because of the logarithmic singularity of G_a below the plane.

Therefore, we here develop an original way consisting in using another Green's function in the cavity that we name the 'below' Green's function G_b . Both functions G_a and G_b satisfy the impedance boundary condition (2.3) at z = 0, and derive from the solution for an unperturbed plane, respectively with the impedances g and -g.

In this section, the solution for active and passive plane [3]-[4] are briefly presented, then G_a and G_b are developed.

3.1 The solution for an unperturbed impedance plane with arbitrary impedance

3.1.1 Solution for a monopole

We consider the incident field, radiated by a monopole at r'(x', y', z' = h) (figure 2), $p_{inc} = e^{-ikR(z)}/kR(z)$ at M(x, y, z), with $R(z) = \sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}$.

Figure 2: geometry and definition of φ for the radiation at M

From [3], the field p_s scattered by the impedance plane is then given by

$$p_s = \frac{e^{-ikR(-z)}}{kR(-z)} + 2ige^{ikg(z+h)}\mathcal{J}_g(\rho, -z-h),$$
(3.1)

where $R(-z) = \sqrt{\rho^2 + (z+h)^2}$, $z+h = R(-z)\cos\varphi$, $\rho = R(-z)\sin\varphi$, and,

$$\mathcal{J}_g(\rho, -z) = \frac{e^{-ikgz}}{2} \int_{\mathcal{D}} \frac{H_0^{(2)}(k\rho\sin\beta)e^{-ikz\cos\beta}}{\cos\beta + g}\sin\beta d\beta, \qquad (3.2)$$

for z > 0, $g = \sin \theta_1$, with $\operatorname{Re}(ik \sin \beta) = 0$ on \mathcal{D} from $-i\infty - \arg(ik)$ to $i\infty + \arg(ik)$. This function is a Fourier-Bessel integral commonly encountered in scattering theory [17, p.234], also called a Sommerfeld-type integral [18], which has a cut described by $\operatorname{Re}(ik \cos \theta_1) = 0$ when $\operatorname{Re}(g) \leq 0$ and a singularity at g = -1.

A correct definition of \mathcal{J}_g for arbitrary $g = \sin \theta_1$, active (Reg < 0) or passive (Reg > 0), except on the cut, is also given [3] by,

$$\mathcal{J}_g(\rho, -z - h) = -\int_{-ib}^{\infty} e^{-a\cosh t} dt = i \int_b^{i\infty} e^{-a\cos\alpha} d\alpha, \qquad (3.3)$$

where $a = \epsilon i k R(-z) \sin \varphi \cos \theta_1$, $\epsilon = \operatorname{sign}(\operatorname{Re}(ik \cos \theta_1))$ (Re(a) = 0 is on a cut of \mathcal{J}_g and it can be only considered in the sense of the limit), and b satisfies

$$e^{\mp ib} = \frac{ikR(-z)}{a}(1\pm\sin\theta_1)(1\pm\cos\varphi),\tag{3.4}$$

with $|\operatorname{Re}b| < \pi$, $e^{-2ib} = \frac{(1+\sin\theta_1)(1+\cos\varphi)}{(1-\sin\theta_1)(1-\cos\varphi)}$, $|\operatorname{Re}(\theta_1)| \le \pi/2$. As g varies, this expression has a correct cut as ϵ changes of sign for $\operatorname{Re}g < 0$, and is regular elsewhere (note: for $\operatorname{Re}g > 0$, the change of sign of ϵ does not induce a cut as g varies). The figure 3 shows the perfect agreement of \mathcal{J}_g given respectively by (3.3) and by Fourier-Bessel expansion (3.2).

Figure 3: Comparison of \mathcal{J}_g given by (3.3) $(-\Box -)$ and by Fourier-Bessel expansion when (3.2) is used $(-\circ -)$, when Reg varies; left: $|\mathcal{J}_g|$ when $\operatorname{Im}(g) = -0.4$, z + h = .2, $\rho = .3$, ik = .01 + i1.; right: $|\mathcal{J}_g|$ when $\operatorname{Im}(g) = 1.2$, z + h = 1., $\rho = 1$., ik = .01 + i1.

3.1.2 Some properties of \mathcal{J}_g

Some general properties of \mathcal{J}_g , derived from (3.3), are worth noticing. Using the integral expression of the modified Bessel function K_0 [19], we can write,

$$\mathcal{J}_{g}(\rho, -z - h) + K_{0}(a) = -i \int_{0}^{b} e^{-a\cos\alpha} d\alpha = -i \int_{-b}^{0} e^{-a\cos\alpha} d\alpha, \qquad (3.5)$$

which implies, by definition of b and a, that

$$\mathcal{J}_{g}(\rho, -z - h) + K_{0}(a) = -\mathcal{J}_{-g}(\rho, z + h) - K_{0}(a), \qquad (3.6)$$

where $a = \epsilon i k \rho \cos \theta_1$, $\epsilon = \text{sign}(\text{Re}(ik \cos \theta_1))$. From the regularity of $\mathcal{J}_{\pm g}(\rho, -z)$ for z > 0and the expression of b, we deduce that $\mathcal{J}_g(\rho, -z)$ has a logarithmic singularities when $z \leq 0$ at $\rho = 0$. So, when a, and thus, when ρ vanishes, we have [3]

$$\mathcal{J}_{g}(\rho, -z) \sim -2K_{0}(a) \text{ when } z < 0, g \neq -1, \mathcal{J}_{g}(\rho, -z) \sim -K_{0}(a) \text{ when } z = 0, g \neq -1, \mathcal{J}_{g}(\rho, -z) \sim -E_{1}(\frac{ik(1+g)}{2}(|r|+z)).$$
(3.7)

where E_1 is the exponential integral [19]. Moreover, the reader can verify by inspection that,

$$\frac{\partial \mathcal{J}_g(\rho, -z - h)}{\partial z} = \frac{e^{-ik(R(-z) + g(z+h))}}{R(-z)},\tag{3.8}$$

and,

$$(\Delta + k^2)(e^{ikgz}\mathcal{J}_g(\rho, -z)) = 4\pi e^{ikgz}U(-z)\delta(x)\delta(y), \qquad (3.9)$$

where U is the unit step function, δ is the Dirac function.

Remark 3. Let us notice [3] that, for Reg > 0 and $arg(ik) = \pi/2$,

$$\mathcal{J}_g(\rho, -z - h) = \int_{-i\infty}^0 e^{-ikg(z_1 + z + h)} \frac{e^{-ikR(-z_1 - z)}}{kR(-z_1 - z)} k \, dz_1, \tag{3.10}$$

where $R(-z) = \sqrt{\rho^2 + (z+h)^2}$, and that, for g = 1,

$$\mathcal{J}_{g=1}(\rho, -z-h) = -E_1(ik(R(-z) + (z+h))).$$
(3.11)

3.2 The functions G_a and G_b

3.2.1 The Green's functions G_a above the plane

The Green's function G_a is given by the solution for a monopole above the plane with impedance parameter g. From the previous section, it is given by

$$G_a(r,r') = G^0(x - x', y - y', z - z') + G^s_g(x - x', y - y', -z - z'), \qquad (3.12)$$

where G^0 is the free space Green's function,

$$G^{0}(r) = \frac{e^{-ik|r|}}{k|r|},$$
(3.13)

and ${\cal G}_g^s$ is the scattered Green's function,

$$G_g^s(r) = \frac{e^{-ik|r|}}{k|r|} + 2ige^{-ikgz}\mathcal{J}_g(\rho, z),$$
(3.14)

with $|r| = \sqrt{\rho^2 + z^2}$ and $\rho = \sqrt{x^2 + y^2}$.

Because

$$(\Delta + k^2)G^0(r) = \frac{-4\pi}{k}\delta(x)\delta(y)\delta(z), \qquad (3.15)$$

and the equation (3.9) satisfied by $\mathcal{J}_g(\rho, -z)$, the function G_a verifies in \mathbb{R}^3 ,

$$(\Delta + k^2)G_a(r, r') = \frac{-4\pi}{k}(\delta(r - r') + \delta(r - r'_{im}) - 2ikge^{ikg(z+z')}U(-z - z')\delta(x - x')\delta(y - y')),$$
(3.16)

where $r'_{im} \equiv (x', y', -z')$, $\delta(r) \equiv \delta(x)\delta(y)\delta(z)$. It satisfies correct radiation conditions at infinity for $z \ge 0$ (equ. (2.6)-(2.7) in condition (b)), and will be our choice for the Green's function above the plane for arbitrary $g = \sin \theta_1$, except for $\operatorname{Re}(ik \cos \theta_1) = 0$ when $\operatorname{Re}(g) \le 0$ (i.e. except on the cut of \mathcal{J}_g).

3.2.2 The Green's functions G_b below the impedance plane

The function G_a cannot be used to describe the field in the cavity, when it is influenced by fictitious sources on the aperture, in particular because of the presence of a logarithmic singularity of $\mathcal{J}_q(\rho, -z)$ for negative z when $\rho = 0$.

However, we can consider $\mathcal{J}_{-g}(\rho, z)$ instead of $\mathcal{J}_{g}(\rho, -z)$, and obtain an original Green's function G_b , which is suitable for an integral representation of the field in the cavity, and continues to satisfy the impedance boundary condition (2.3). This choice will be corrected in the vicinity of g = 1 to take account of the singularity of \mathcal{J}_{-g} at this point.

The function G_b for $g \neq 1$

We remark that, below the plane where z + z' < 0, the function

$$G_b(r,r') = G^0(x - x', y - y', z - z') + G^s_{-g}(x - x', y - y', z + z'), \qquad (3.17)$$

with

$$G^{s}_{-g}(r) = \frac{e^{-ik|r|}}{k|r|} - 2ige^{ikgz}\mathcal{J}_{-g}(\rho, z), \qquad (3.18)$$

continues to satisfy the impedance boundary condition (2.3) on the plane z = 0, is regular for z + z' < 0, except for the singularity of G^0 at z = z', and verifies in \mathbb{R}^3 ,

$$(\Delta + k^2)G_b(r, r') = \frac{-4\pi}{k} (\delta(r - r') + \delta(r - r'_{im}) + 2ikge^{ikg(z+z')}U(z+z')\delta(x-x')\delta(y-y'))$$
(3.19)

where $r'_{im} \equiv (x', y', -z'), \, \delta(r) \equiv \delta(x)\delta(y)\delta(z).$

This will be our choice for the Green's function below the plane, except in the vicinity of g = 1 (where \mathcal{J}_{-g} is singular) and on the cut of \mathcal{J}_{-g} (the case with $\operatorname{Re}(ik\cos\theta_1) = 0$ has to be taken in the sense of the limit). Let us notice that it satisfies the usual radiation conditions at infinity, similar to (b) but in lower space instead of upper space. **Remark 4.** In the case of a cavity Ω_2 filled with a material of wave number k_2 instead of k, and the conditions of continuity $p|_{z=0^-} = p|_{z=0^+}$ and $\partial_z p|_{z=0^-} = a_2 \partial_z p|_{z=0^+}$, we consider G_b with the parameter g_2 instead of g satisfying $k_2g_2 = a_2kg$ so that $(\partial_z p(r') - ik_2g_2p(r'))|_{z=0^-} = a_2(\partial_z p(r') - ikgp(r'))|_{z=0^+}$.

A suitable choice for G_b when $g \simeq 1$, regular on the cut of \mathcal{J}_{-g}

The function $\mathcal{J}_{-g}(\rho, z)$ is singular at g = 1. However, considering the equations (3.6) and the domain of regularity of \mathcal{J}_g [3], the function $\mathcal{J}_{-g}(\rho, z) + 2K_0(a)$ is regular for $\rho \neq 0$ in vicinity of g = 1, as $g = \sin \theta_1$ varies, with $a = ik\epsilon\rho\cos\theta_1$, $\epsilon = \operatorname{sign}(\operatorname{Re}(ik\cos\theta_1))$. We can then use that

$$K_0(a) + \ln(a)I_0(a) \tag{3.20}$$

is an entire function of a [19], and

$$(\Delta + k^2)(e^{ik\sin\theta_1 z}I_0(ik\epsilon\rho\cos\theta_1)) = 0, \qquad (3.21)$$

and choose to add the term

$$D_b(r,r') = 4ig \ln(ikd\cos\theta_1) I_0(ik\cos\theta_1\sqrt{(x-x')^2 + (y-y')^2}) e^{ikg(z+z')}, \qquad (3.22)$$

to G_b for $g \simeq 1$, where d is an arbitrary constant. So defined,

$$G_b(r,r') = G^0(x - x', y - y', z - z') + G^s_{-g}(x - x', y - y', z + z') + D_b(r,r'), \quad (3.23)$$

becomes regular for $\operatorname{Re} g \geq 0$, and presents, as g varies, the same cut and singularities as G_a for $\operatorname{Re} g \leq 0$.

This function continues to satisfy the impedance boundary condition (2.3) on the plane z = 0, is regular for z + z' < 0 except for the singularity of G^0 , and verifies (3.19). The corrective term $D_b(r, r')$ does not satisfy the usual radiation conditions at infinity but it will be of no consequence for our demonstration in further sections, and this function can be used when $|ik\epsilon\rho\cos(\theta_1)| \ll 1$ is verified in the whole cavity.

Remark 5. For $g \to 1$, we notice [3] that

$$\mathcal{J}_{-g}(\rho, z) = E_1(\frac{ik(1+g)(|r|+z)}{2}) - 2K_0(a) + O(ik(1-g)(|r|-z)E_2(\frac{ik(1+g)(|r|+z)}{2}))$$
(3.24)

and thus

$$G_{-g}^{s}(r) + D_{b}(r) \to \frac{e^{-ik|r|}}{k|r|} - 2ie^{ikz}(E_{1}(ik(|r|+z)) + 2\ln(\rho/d)), \qquad (3.25)$$

which is regular for z < 0, $\rho \to 0$, since $|r| + z = \frac{\rho^2}{|r|-z}$ and $E_1(v) = -\ln(v) + O(1)$.

3.2.3 Some additional properties of $G_{a(,b)}(r,r')$

From the derivative of \mathcal{J}_g given in (3.8), we have

$$\left(\frac{\partial}{\partial z'} - ikg\right)G_{a(,b)}(r,r')
= \left(\frac{\partial}{\partial z'}\right)(G^{0}(r-r') + G^{0}(r-r'_{im})) - ikg(G^{0}(r-r') - G^{0}(r-r'_{im})),$$
(3.26)

where $r'_{im} \equiv (x', y', -z')$. This leads us to write, when z = 0,

$$\left(\frac{\partial}{\partial z'} - ikg\right)G_{a(b)}(r,r')|_{z=0} = \left(\frac{\partial}{\partial z'}\right)\left(2G^0(r-r')\right)|_{z=0},\tag{3.27}$$

and, when $z' \to 0, z \neq 0$,

$$\left(\frac{\partial}{\partial z'} - ikg\right)G_{a(,b)}(r,r') \to 0.$$
(3.28)

These properties will be particularly useful to prove the continuity of the normal derivative of the field, deduced from our solution, through the aperture of the cavity.

Moreover, for our choice of G_b for $g \neq 1$ (in section 3.2.2), we have

$$G_{b}(r,r') = G_{a}(r,r') + 4ige^{ikg(z+z')}K_{0}(a)$$

$$G_{b}(r,r')|_{g=v} = G_{a}(r_{im},r'_{im})|_{g=-v}$$

$$(G_{a}(r,r') + G_{b}(r,r'))|_{z=z'=0} = 4(\frac{e^{-ik\rho}}{k\rho} + ig(\mathcal{J}_{g}(\rho,0) + K_{0}(a))), \qquad (3.29)$$

while, for our choice of G_b for $g \simeq 1$ (in section 3.2.2),

$$G_{b}(r,r') = G_{a}(r,r') + 4ige^{ikg(z+z')}(K_{0}(a) + \ln(ikd\cos(\theta_{1}))I_{0}(ik\rho\cos(\theta_{1})))$$

$$(G_{a}(r,r') + G_{b}(r,r'))|_{z=z'=0} = 4(\frac{e^{-ik\rho}}{k\rho} + ig(\mathcal{J}_{g}(\rho,0) + K_{0}(a) + \ln(ikd\cos(\theta_{1}))I_{0}(ik\rho\cos(\theta_{1})))),$$

$$(3.30)$$

where

$$\mathcal{J}_g(\rho,0) + K_0(a) = -i \int_0^b e^{-a\cos\alpha} d\alpha, \ b = \mp i \ln(\epsilon \frac{(1\mp\sin\theta_1)}{\cos\theta_1}), \tag{3.31}$$

with $g = \sin \theta_1$, $a = \epsilon i k \rho \cos \theta_1$, $\epsilon = \operatorname{sign}(\operatorname{Re}(i k \rho \cos \theta_1))$. Let us also notice that, in agreement with the reciprocity principle [12], we have $G_{a(,b)}(r,r') = G_{a(,b)}(r',r)$.

Remark 6. We can use (3.11) in (3.30) for $g \to 1$, and notice that, in this case,

$$(G_a(r,r') + G_b(r,r'))|_{z=z'=0} \to 4\left(\frac{e^{-ik\rho}}{k\rho} - i(E_1(ik\rho) + \ln(\rho/d))\right).$$
(3.32)

Remark 7. For $|r'| \to \infty$, $r - r_{im} = 2\hat{z}(\hat{z}.r)$, we have

$$G_a(r,r') = \frac{e^{-ik|r'|}}{k|r'|} \left(\left[e^{ik(r,r')/|r'|} \left(1 + e^{-2ik(\widehat{z}\frac{r'}{|r'|})\widehat{z}.r} \left(\frac{\widehat{z}\frac{r'}{|r'|} - g}{\widehat{z}\frac{r'}{|r'|} + g} \right) \right) \right] + o(1) \right).$$
(3.33)

4 Integral representation of the field with G_a and G_b

4.1 The representation of the field from the second Green's theorem

Let us consider the pressure fields p and G, satisfying the Helmholtz equation

$$(\Delta + k^2)p = W,$$

$$(\Delta + k^2)G = W_G,$$
(4.1)

in the domain Ω , bounded by the surface $\partial \Omega$, piecewise analytic. If the functions p and G have the regularity which permits the application of the second Green's theorem, we can write

$$\int_{\Omega} W(r) G(r) dV - \int_{\Omega} W_G(r) p(r) dV = \int_{\partial \Omega^+} \widehat{n}.(\operatorname{grad}(G)p - \operatorname{grad}(p)G)dS, \qquad (4.2)$$

where $\partial \Omega^+$ denotes the internal surface to Ω , \hat{n} is the unit normal, piecewise defined, directed inside Ω , and the surface integral is taken in the sense of principal value of Cauchy. Thereafter, we omit the sign for $\partial \Omega^+$, and we write $\partial \Omega$ instead of $\partial \Omega^+$.

4.2 The case $W_G(r) = -w\delta(r - r')$

Let us consider $W_G(r)$ as a generalized function in (4.2), with $W_G(r) = -w\delta(r - r')$, w being a constant. In this case, we have

$$1_{\Omega}(r')p(r') - p_i(r') = \frac{1}{w} \int_{\partial\Omega} \widehat{n}.(\operatorname{grad}(G(r,r'))p - \operatorname{grad}(p)G(r,r'))dS,$$
(4.3)

for $r' \in \overline{\Omega}$, where

$$p_{i} = -\frac{1}{w} \int_{\Omega} W(r) G(r, r') dV,$$

$$1_{\Omega}(r') = \int_{\Omega} \delta(r - r') dr = \frac{1}{4\pi} \int_{\partial\Omega} \widehat{n} \operatorname{grad}(\frac{1}{|r' - r|}) dS = \frac{1}{4\pi} \int_{\partial\Omega} \frac{(r' - r)}{|r' - r|^{3}} \widehat{n} dS, \qquad (4.4)$$

and the integrals are considered in the sense of the principal value of Cauchy. The reader can easily recover 1_{Ω} , by letting k = 0, $G(r, r') = \frac{w}{4\pi |r'-r|}$ and $p \equiv 1$.

Remark 8. $1_{\Omega} = 1$ in Ω , $1_{\Omega} = 0$ in $R^3 \setminus \overline{\Omega}$, and 1_{Ω} is fractional on $\partial \Omega$ (= $\frac{1}{2}$ when $\partial \Omega$ is smooth). For an external problem in $R^3 \setminus \Omega'$, the surface can be considered to be closed at infinity when the Sommerfeld conditions at infinity are satisfied (for example with $G(r, r') = \frac{we^{-ik|r'-r|}}{4\pi|r'-r|}$) so that $1_{R^3 \setminus \Omega'}(r') = 1 - 1_{\Omega'}(r')$. Let us notice that, when $\widehat{n}grad(p)$ and p vanishes on a continuous part of $\partial \Omega$, and $W \equiv 0$, we can use that $1_{\Omega} = 0$ in $R^3 \setminus \overline{\Omega}$ and the analytical continuation through an hole, and conclude that p = 0 in Ω .

Remark 9. Considering the continuity of the single-layer potential in (50), we notice that

$$\frac{1}{w} \int_{\partial\Omega} (\widehat{n}.grad(G(r,r'))p_e(r) - q_e(r)G(r,r'))dS|_{r'\in\Omega\to r_0\in\partial\Omega}
\rightarrow (1 - 1_{\Omega}(r_0))p_e(r_0) +
+ \frac{1}{w}p.v. \int_{\partial\Omega} (\widehat{n}.grad(G(r,r_0))p_e(r) - q_e(r)G(r,r_0))dS,$$
(4.5)

when p_e is continuous on $\partial\Omega$, $q_e(r)G(r, r')$ is summable and its integral is continuous.

4.3 Integral representation of the field above the plane and in the cavity

4.3.1 Integral representation of the field above the plane

From the definitions of G_a and $p = p_s + p_{inc}$, we can use the second Green's theorem for Ω tending to the infinite half-space Ω_1 above the plane. Indeed, considering the condition (b), and the impedance boundary condition (2.3), satisfied by p and G_a on the plane z = 0, the surface integral at infinity and on $S_0 \backslash S_1$ vanishes, so that we obtain,

$$(1_{\Omega_1}(r') + 1_{\Omega_1}(r'_{im}))p(r') - p_i(r') = \frac{-k}{4\pi} \int_{S_1} G_a(r, r')(\partial_z p(r) - ikgp(r))dS, \qquad (4.6)$$

for $z \ge 0$, where $(1_{\Omega_1}(r') + 1_{\Omega_1}(r'_{im})) = 1$ since $r'_{im} \equiv (x', y', -z')$, and

$$p_i(r') = \frac{-k}{4\pi} \int_{\Omega_1} W(r) \, G_a(r, r') dV$$
(4.7)

is the field in presence of the plane without cavity.

4.3.2 Integral representation of the field in the cavity

From the definitions of G_b and $p = p_s + p_{inc}$, we can use the second Green's theorem in the domain Ω_2 of the cavity, which gives us,

$$(1_{\Omega_{2}}(r') + 1_{\Omega_{2}}(r'_{im}))p(r') + \frac{k}{4\pi} \int_{\Omega_{2}} W(r) G_{b}(r, r') dV = = \frac{k}{4\pi} \int_{\partial\Omega_{2}} \widehat{n}.(\operatorname{grad}(G_{b}(r, r'))p - \operatorname{grad}(p)G_{b}(r, r'))dS,$$
(4.8)

where $1_{\Omega_2}(r') = \int_{\Omega_2} \delta(r-r') dr = \frac{1}{4\pi} \int_{\partial \Omega_2} \frac{(r'-r)}{|r'-r|^3} \widehat{n} dS$, \widehat{n} is the unit normal to S_2 directed inside Ω_2 , and $r'_{im} \equiv (x', y', -z')$.

Considering that the source W is above the plane, and that G_b (resp. p) satisfies the impedance boundary condition (2.3) (resp. (2.8)), the equation (4.8) becomes

$$(1_{\Omega_2}(r') + 1_{\Omega_2}(r'_{im}))p(r') = \frac{k}{4\pi} \int_{S_1} G_b(r, r')(\partial_z(p(r)) - ikgp(r))dS + \frac{k}{4\pi} \int_{S_2} p(r)(\partial_n G_b(r, r') - ikg_c G_b(r, r'))dS,$$
(4.9)

for $z' \leq 0$, where $\partial_n(.) = \hat{n}.\operatorname{grad}(.)$, and we notice that,

$$(1_{\Omega_2}(r') + 1_{\Omega_2}(r'_{im})) = 1 \text{ in } \overline{\Omega}_2 \setminus \overline{S}_2,$$

$$1_{\Omega_2}(r'_{im}) = 0 \text{ in } \overline{\Omega}_2 \setminus \overline{S}_1,$$

$$(1_{\Omega_2}(r') + 1_{\Omega_2}(r'_{im})) = 0 \text{ when } r' \notin \overline{\Omega}_2.$$
(4.10)

Remark 10. Even if $\partial_n G_b(r, r')|_{r \in S_2}$ diverges when $r' \notin S_2 \to r$, it is continuous when r' belongs to smooth parts of S_2 .

5 The integral equations on the aperture S_1 and on the surface of the cavity S_2

On the aperture S_1 , we can substract the equation (4.6) from (4.9), and obtain

$$((1_{\Omega_{2}}(r') + 1_{\Omega_{2}}(r'_{im}) - 1)p(r') + p_{i}(r'))|_{r' \in S_{1}} = \frac{k}{4\pi} \int_{S_{1}} (G_{a}(r, r') + G_{b}(r, r'))(\partial_{z}p(r) - ikgp(r))dS + \frac{k}{4\pi} \int_{S_{2}} p(r)(\partial_{n}(G_{b}(r, r')) - ikg_{c}G_{b}(r, r'))dS,$$
(5.1)

where we notice that $(1_{\Omega_2}(r') + 1_{\Omega_2}(r'_{im})) = 1$ on S_1 , except possibly on $S_1 \cap S_2$, while, on the surface \overline{S}_2 of the cavity, we can write, from (4.9),

$$(1_{\Omega_2}(r') + 1_{\Omega_2}(r'_{im}))p(r')|_{r'\in\overline{S}_2} = \frac{k}{4\pi} \int_{S_1} G_b(r, r')(\partial_z p(r) - ikgp(r))dS + \frac{k}{4\pi} \int_{S_2} p(r)(\partial_n(G_b(r, r')) - ikg_c G_b(r, r'))dS,$$
(5.2)

where $1_{\Omega_2}(r') = \int_{\Omega_2} \delta(r-r') dr = \frac{1}{4\pi} \int_{\partial \Omega_2} \hat{n} \operatorname{grad}(\frac{1}{|r'-r|}) dS$ (= $\frac{1}{2}$ on smooth parts), the surface integrals are taken in the sense of principal value of Cauchy, and $\partial_n(.) = \hat{n} \operatorname{grad}(.)$, \hat{n} is the unit normal to S_2 directed inside Ω_2 .

The integral equations (5.1)-(5.2) represent a system for two unknowns,

$$q_1(r) = (\partial_z p(r) - ikgp(r))|_{r \in S_1},$$

$$p_2(r) = p(r)|_{r \in S_2},$$
(5.3)

respectively on the aperture and on the surface of cavity, whose solution permits to express the field everywhere.

6 Uniqueness property of the integral equations

From the conditions of regularity given in (a), we consider the solutions of our integral equations (5.1)-(5.2), $q_1(r)$ (on the aperture) and $p_2(r)$ (on the surface of the cavity), such

that $q_1 = O(r^{\alpha})$, $-1 < \alpha \leq 0$, as the distance to edges or corners vanishes, and p_2 is continuous. We then study the uniqueness of q_1 and p_2 when $\operatorname{Re} g > 0$ and $\operatorname{Re} g_c > 0$, or $g = g_c = 0$, and verify that q_1 and p_2 vanish when $p_i \equiv 0$.

For this, we show that we can define a field $p_e(r')$, derived from q_1 , p_2 and p_i , which verifies $p_2(r') = p_e(r')$ on S_2 and $q_1(r') = \partial_z p_e(r') - ikgp_e(r')$ on S_1 , and satisfies the boundary value problem with the conditions of uniqueness given in section 2.

6.1 A field $p_e(r')$ derived from p_2 and q_1

We consider the field p_e derived, from q_1 and p_2 , following

$$p_e(r')|_{r'\in\Omega_1} = \frac{-k}{4\pi} \int_{S_1} G_a(r,r')q_1(r)dS + p_i(r'), \tag{6.1}$$

in the domain Ω_1 above the plane, and,

$$p_{e}(r')|_{r'\in\Omega_{2}} = (1 - (1_{\Omega_{2}}(r') + 1_{\Omega_{2}}(r'_{im})))p_{2}(r') + \frac{k}{4\pi} \int_{S_{1}} G_{b}(r,r')q_{1}(r)dS + \frac{k}{4\pi} \int_{S_{2}} p_{2}(r)(\partial_{n}G_{b}(r,r') - ikg_{c}G_{b}(r,r'))dS,$$

$$(6.2)$$

in the domain Ω_2 of the cavity, where the surface integrals are taken in the sense of principal value of Cauchy.

The expression (6.2) verifies, like G_b , the Helmholtz equation in Ω_2 , while (6.1) satisfies, like G_a , the Helmholtz equation in Ω_1 with the radiation conditions at infinity given in (b), and the impedance conditions on $S_0 \setminus S_1$. Moreover, from the equation of continuity (4.5), the function $p_e(r')$ is continuous up to S_2 .

It then remains to verify the continuity through the aperture S_1 of the cavity, the impedance boundary condition on S_2 , and to analyze the expressions of q_1 and p_2 with p_e . Therefore, we show that we have,

- $p_e(r') = p_2(r')$ on the surface of the cavity S_2 ;
- the continuity of $p_e(r')$ through the aperture S_1 ;
- the continuity of $\partial_z p_e(r') ikgp_e(r')$ through S_1 ;
- $\partial_z p_e(r') ikgp_e(r') = q_1(r')$ on S_1 ;

$$-\partial_n p_e = ikg_c p_2 \text{ on } S_2,$$

in the case $p_i \equiv 0$, considered for the uniqueness.

6.2 $p_e(r') = p_2(r')$ on S_2

Substracting the integral equation (5.2) from (6.2) for $r' \in S_2$, we obtain

$$p_e(r') + (1_{\Omega_2}(r') + 1_{\Omega_2}(r'_{im}) - 1) p_2(r') = (1_{\Omega_2}(r') + 1_{\Omega_2}(r'_{im})) p_2(r'),$$
(6.3)

on S_2 , and thus,

$$p_e(r')|_{r'\in S_2} = p_2(r').$$
 (6.4)

6.3 Continuity of $p_e(r')$ through S_1

The integrals in the expressions (6.1) and (6.2) of $p_e(r')$ remain convergent when the point of observation approaches the aperture respectively above and below S_1 . Morever, $(1_{\Omega_2}(r') + 1_{\Omega_2}(r'_{im})) = 1$ in $\overline{\Omega}_2 \setminus S_2$, and, from the integral equation (5.1) with $p_i \equiv 0$, the expressions (6.1) and (6.2) tend to the same limit, which proves the continuity of $p_e(r')$ through the aperture S_1 .

6.4 Continuity of $\partial_{z'} p_e(r') - ikgp_e(r')$, equal to $q_1(r')$ on S_1

Using (3.27) in the expressions (6.1) and (6.2) of $p_e(r')$, we can write

$$\partial_{z'} p_e(r') - ikgp_e(r')|_{z'=h>0} = \frac{-k}{4\pi} (\frac{\partial}{\partial z'}) \int_{S_1} 2G^0(r,r') q_1(r) dS|_{z'=h},$$

$$\partial_{z'} p_e(r') - ikgp_e(r')|_{z'=-h<0} = \frac{k}{4\pi} (\frac{\partial}{\partial z'}) \int_{S_1} 2G^0(r,r') q_1(r) dS|_{z'=-h} + \frac{k}{4\pi} (\frac{\partial}{\partial z'} - ikg) \int_{S_2} p_2(r) (\partial_n G_b(r,r') - ikg_c G_b(r,r')) dS|_{z'=-h},$$
(6.5)

We then apply that,

$$(\frac{\partial}{\partial z'} - ikg)G_b(r, r') \to 0 \text{ when } z' \to 0, z \neq 0, (\frac{\partial}{\partial z'})G^0(r(x, y, 0), r')|_{z'=h} = -(\frac{\partial}{\partial z'})G^0(r(x, y, 0), r')|_{z'=-h},$$

$$(6.6)$$

This implies that the contribution of the integral term along S_2 vanishes when $h \to 0$, and that we have the continuity of $\partial_z p_e(r') - ikgp_e(r')$ through the aperture S_1 .

Moreover, we notice that

$$\pm \left(\partial_{z'} p_e(r') - ikgp_e(r')\right)|_{z'=h>0} \to \frac{-k}{4\pi} \left(\frac{\partial}{\partial z'}\right) \int_{S_1} 2G^0(r,r') q_1(r) dS|_{z'=\pm h},\tag{6.7}$$

when $h \to 0$, while, by application of the discontinuity property of the normal derivative of the single-layer potential [20] and substraction of the relations in (6.7) for plus and minus signs, we can write

$$\partial_z p_e(r') - ikgp_e(r') = q_1(r') \text{ on } S_1.$$
 (6.8)

6.5 $\partial_n p_e(r') = ikg_c p_e$ on S_2

The field $p_e(r')$, defined by (6.2), satisfies the Helmholtz equation in Ω_2 , and we can write in this domain, from the second Green's theorem,

$$(1_{\Omega_2}(r') + 1_{\Omega_2}(r'_{im}))p_e(r') = \frac{k}{4\pi} \int_{S_1} G_b(r, r')(\partial_z p_e(r) - ikgp_e(r))dS + \frac{k}{4\pi} \int_{S_2} (p_e(r)\partial_n G_b(r, r') - G_b(r, r')\partial_n p_e(r))dS.$$
(6.9)

We have proved that $\partial_z(p_e(r)) - ikgp_e(r) = q_1(r)$ on S_1 and $p_e(r) = p_2(r)$ on S_2 , and substracting (6.9) from (6.2), we obtain, for $r' \in \Omega_2$,

$$\frac{k}{4\pi} \int_{S_2} G_b(r, r') \mu(r) dS = 0, \qquad (6.10)$$

with $\mu(r) \equiv \partial_n p_e(r) - ikg_c p_e(r)$.

The surface S_2 , bounded by the curve C_1 , is open, and, considering the domain of analyticity of $G_b(r, r')$, we can use the analytic continuation principle through S_1 . So, the potential

$$\mathcal{P}(r') = \frac{k}{4\pi} \int_{S_2} G_b(r, r') \mu(r) dS,$$
(6.11)

vanishes in the domain $\Omega \equiv \Omega_2 \cup \Omega_2^i$, where Ω_2^i (resp. S_2^i) is the symmetric of Ω_2 (resp. S_2) relatively to the plane z = 0.

From the properties of G_b , \mathcal{P} is also regular in $R^3 \setminus (\Omega \cup \Omega_c)$, where Ω_c is the upper part of the cylinder along z-axis bounded by S_2^i . It is then possible to prove that $\mu \equiv 0$. For this, two distinct proofs are detailed in appendix A, successively for g = 0 or $g \to \infty$, and, for $g \neq 0$, $|g| < \infty$.

7 Some simplifications of the integral equations for a shallow cavity

The integrals with $\partial_n(\frac{e^{-ik|r-r'_{im}|}}{k|r-r'_{im}|})$ terms, in the equations (5.1)-(5.2), become difficult to calculate when $|r - r'_{im}| \to 0$ and the depth vanishes. Therefore, we develop our integral equations in a new form, and analytical expressions are derived.

7.1 A new form of the integral terms for shallow cavity

For a shallow cavity, we let

$$G_{bs}(r,r') = G_b(r,r') - G_{st}(r,r'),$$

$$G_{st}(r,r') = \frac{1}{k|r-r'|} + \frac{1}{k|r-r'_{im}|},$$

$$r'_2(r_1) \in S_2, r_1 \in S_1,$$
(7.1)

where $r'_2(.)$ is a projection of S_1 on S_2 with $r'_2(r_1) \to r_1$ when $r'_2(r_1) \to S_1$. We then consider the domain Ω defined so that $1_{\Omega}(r') = 1_{\Omega_2}(r') + 1_{\Omega_2}(r'_{im})$, and notice that

$$1_{\Omega}(r')p_{2}(r') = \frac{p_{2}(r')}{4\pi} \int_{\partial\Omega} \widehat{n} \operatorname{grad}(\frac{1}{|r-r'|})dS,$$

$$= \frac{k}{4\pi} \int_{S_{2}} \widehat{n} \operatorname{grad}(G_{st}(r,r'))p_{2}(r')dS,$$
 (7.2)

We can use this equality, and derive a new form of integrals along S_2 in our system of equations.

So, we obtain, for $r' \in S_1$,

$$p_{i}(r') - p_{2}(r'_{2}(r')) = \frac{k}{4\pi} \int_{S_{1}} (G_{a}(r,r') + G_{b}(r,r'))q_{1}(r)dS + \frac{k}{4\pi} \int_{S_{2}} p_{2}(r)(\partial_{n}(G_{bs}(r,r')) - ikg_{c}G_{b}(r,r'))dS + \frac{k}{4\pi} \int_{S_{2}} (p_{2}(r) - p_{2}(r'_{2}(r')))\partial_{n}(G_{st}(r,r'))dS,$$

$$(7.3)$$

while, for $r' \in \overline{S}_2$,

$$-k \int_{S_2} (p_2(r) - p_2(r')) \partial_n (G_{st}(r, r')) dS = k \int_{S_1} G_b(r, r') q_1(r) dS + k \int_{S_2} p_2(r) (\partial_n (G_{bs}(r, r')) - ikg_c G_b(r, r')) dS.$$
(7.4)

Comparing with previous integral equations system, we notice that the term $\partial_n(\frac{1}{k|r-r'_{im}|})$ is multiplied by terms that vanish as $|r - r'_{im}| \to 0$, so that the difficulty of calculus for a small cavity depth has disappeared. Let us remark that this modification can be applied whenever a part of S_2 is close to S_1 .

7.2 The limit case of an impedance patch

In the limit case where $S_2 \equiv S_1$, the integral with $\partial_n G_{st}(r, r')$ vanishes, and $\partial_n (G_{bs}(r, r')) = ikg G_b(r, r')$, so that we obtain, for $r' \in S_1$,

$$k \int_{S_1} G_b(r, r')(q_1(r) + ik(g - g_c)p_2(r))dS|_{z'=0^-} = 0,$$

$$p_i(r') - p_2(r') = \frac{k}{4\pi} \int_{S_1} G_a(r, r')q_1(r)dS|_{z'=0^+},$$
 (7.5)

where $q_1(r)$ and $p_2(r)$ are assumed to be continuous on \overline{S}_1 . The first equation implies $q_1(r) = ik(g_c - g)p_2(r)$ (see appendix C), which leads us to recover the well-known integral equation [21] for an impedance patch,

$$p_2(r') - p_i(r') = \frac{k}{4\pi} \int_{S_1} G_a(r, r') ik(g - g_c) p_2(r) dS.$$
(7.6)

Remark 11. Let us notice that

$$k \int_{S_1} G_a(r, r') \mu(r) dS|_{z'=0^+} = 0, \qquad (7.7)$$

for $r' \in S_1$, $\mu(r)$ continuous on \overline{S}_1 , implies $\mu(r) \equiv 0$ (see appendix C).

7.3 On some approximations for a small cavity, and validation.

7.3.1 Approximate expressions for a small cavity

For small dimensions with $kd_c = k \frac{\int_{\Omega_2} dV}{\int_{S_1} dS} \ll 1$ and $k^2 \int_{S_1} dS \ll 1$, we assume that

$$p_2(r) - p_c = o(kd_c), \ q_1(r) - q_c = o(kd_c), \ p_c = \frac{\int_{S_2} p_2 dS}{\int_{S_2} dS}, \ q_c = \frac{\int_{S_1} q_1(r) dS}{\int_{S_1} dS},$$
(7.8)

and that, the terms

$$\int_{S_2} (p_2(r) - p_c) \int_{S_2} \partial_n (G_{bs(,st)}(r, r')) dS' dS,
\int_{S_1} (q_1(r) - q_c) \int_{S_{2(,1)}} G_{b(,a)}(r, r') dS' dS,$$
(7.9)

are negligible in our calculus. We can then determinate q_c and p_c , after integration over S_2 and S_1 of integral equations, and obtain an approximate expression of the radiated field.

We notice first that we have

$$(\Delta + k^{2})G_{bs}(r, r') = -k^{2}G_{st}(r, r'), \ r' \in \Omega_{2}, r \in \Omega_{2},$$
$$\int_{\partial\Omega_{2} \equiv S_{2} \cup S_{1}} \partial_{n}G_{bs}(r, r')dS = k^{2}\int_{\Omega_{2}} G_{st}(r, r')dV, \ r' \in \Omega_{2},$$
$$\partial_{z}G_{bs}(r, r') = ikgG_{b}(r, r'), \ r' \in \Omega_{2}, r \in S_{1},$$
(7.10)

and thus,

$$\int_{S_2} \partial_n G_{bs}(r, r') dS = \int_{S_1} ikg \, G_b(r, r') dS + k^2 \int_{\Omega_2} G_{st}(r, r') dV, \, r' \in \Omega_2.$$
(7.11)

Then, summing the integral equation (7.4) over S_2 and using (7.11), we obtain

$$q_{c} \int_{S_{1}} \int_{S_{2}} G_{b}(r,r') dS' dS = (ikp_{c}(\int_{S_{2}} g_{c} \int_{S_{2}} G_{b}(r,r') dS' dS - \int_{S_{1}} g \int_{S_{2}} G_{b}(r,r') dS' dS) - k^{2} p_{c} \int_{\Omega_{2}} \int_{S_{2}} G_{st}(r,r') dS' dV) (1+o(1)),$$
(7.12)

and deduce that

$$q_c = ikp_c[(r_c(g_c) - g) + ikl_c](1 + o(1)),$$
(7.13)

where

$$r_{c}(g_{c}) = \frac{\int_{S_{2}} g_{c} \int_{S_{2}} G_{b}(r, r') dS' dS}{\int_{S_{1}} \int_{S_{2}} G_{b}(r, r') dS' dS} \sim \frac{\int_{S_{2}} g_{c} dS}{\int_{S_{1}} dS},$$

$$l_{c} = \frac{\int_{\Omega_{2}} \int_{S_{2}} G_{st}(r, r') dS' dV}{\int_{S_{1}} \int_{S_{2}} G_{b}(r, r') dS' dS} \sim \frac{\int_{\Omega_{2}} dV}{\int_{S_{1}} dS}.$$
 (7.14)

We then consider the integral equation (7.3), sum it over S_1 , and use (7.11). This gives us,

$$\int_{S_1} p_i(r) dS - p_c \int_{S_1} dS = \frac{kq_c}{4\pi} \int_{S_1} \int_{S_1} G_a(r, r') dS' dS(1 + o(1)).$$
(7.15)

which leads us, from (7.13), to the approximate expressions of p_c and q_c ,

$$p_{c} = \frac{\int_{S_{1}} p_{i}(r) dS / \int_{S_{1}} dS}{1 + \frac{ik}{4\pi} [(r_{c}(g_{c}) - g) + ikl_{c}] \frac{k \int_{S_{1}} \int_{S_{1}} G_{a}(r, r') dS' dS}{\int_{S_{1}} dS}},$$

$$q_{c} = ikp_{c} [(r_{c}(g_{c}) - g) + ikl_{c}],$$
(7.16)

where p_i is the field radiated in presence of a plane without perturbation.

Therefore, we can use the expression of q_c in (4.6), and obtain, for the field diffracted by a shallow cavity above the plane,

$$p(r') - p_i(r') = \frac{-k}{4\pi} q_c \int_{S_1} G_a(r, r') dS (1 + o(1)), \qquad (7.17)$$

in particular for the far field.

Remark 12. In the case of a cavity Ω_2 filled with a homogenous material of wavenumber k_2 , and the conditions of continuity $p|_{z=0^-} = p|_{z=0^+}$ and $\partial_z p|_{z=0^-} = a_2 \partial_z p|_{z=0^+}$, we can consider G_b with k_2 instead of k, and $g_2 = a_2 kg/k_2$ in place of g. In this case, we have $q_1|_{z=0^-} = (\partial_z p(r') - ik_2 g_2 p(r'))|_{z=0^-} = a_2 (\partial_z p(r') - ik_3 g_2 p(r'))|_{z=0^+} = a_2 q_1|_{z=0^+}$.

We can then modify the integral equations and obtain

$$q_{c}|_{z=0^{-}} = ik_{2}p_{c}[(r_{c}(g_{c}') - g_{2}) + ik_{2}l_{c}], \ q_{c}|_{z=0^{-}} = a_{2}q_{c}|_{z=0^{+}},$$

$$p(r') - p_{i}(r') = \frac{-k}{4\pi}q_{c}|_{z=0^{+}} \int_{S_{1}} G_{a}(r, r')dS(1 + o(1)),$$
(7.18)

when $(\frac{\partial}{\partial n} - ik_2g'_c)p|_{S_2} = 0$. Generally, the relation between g'_c and g_c (surface impedance in free space) is $g'_c = a_2g_c/k_2$, and thus,

$$q_c|_{z=0^+} = ip_c[k(r_c(g_c) - g) + ik_2^2 l_c/a_2].$$
(7.19)

Remark 13. A similar demonstration can be used for a small protuberance Ω_2 of surface S_2 above the plane. By the argument of analytic continuation, we consider that the radiation is equivalent to a fictitious q_1 over S_1 . In this case, (7.17) applies with

$$-q_{c} \int_{S_{1}} \int_{S_{2}} G_{a}(r,r') dS' dS = -ikp_{c} (\int_{S_{2}} g_{c} \int_{S_{2}} G_{a}(r,r') dS' dS - \int_{S_{1}} g \int_{S_{2}} G_{a}(r,r') dS' dS) - k^{2} p_{c} \int_{\Omega_{2}} \int_{S_{2}} G_{st}(r,r') dV + o(1),$$

$$\int_{S_{1}} p_{i}(r) dS - p_{c} \int_{S_{1}} dS = \frac{kq_{c}}{4\pi} \int_{S_{1}} \int_{S_{1}} G_{a}(r,r') dS' dS(1+o(1)), \qquad (7.20)$$

and,

$$p_{c} = \frac{\int_{S_{1}} p_{i}(r) dS / \int_{S_{1}} dS}{1 + \frac{ik}{4\pi} [(r_{c}'(g_{c}) - g) - ikl_{c}'] \frac{k \int_{S_{1}} \int_{S_{1}} G_{a}(r, r') dS' dS}{\int_{S_{1}} dS}},$$

$$q_{c} = ikp_{c} [(r_{c}'(g_{c}) - g) - ikl_{c}'], r_{c}'(g_{c}) \sim r_{c}(g_{c}), l_{c}' \sim l_{c}.$$
(7.21)

Let us notice that $+ikl_c$ is replaced by $-ikl'_c$ when we compare with (7.16).

Remark 14. To our knowledge, our approximate expressions are original, but a similar low frequency analysis could also be done with the integral equations given in [1].

7.3.2 Validation in the case of a small cylindrical cavity with impedance wall

For the validation, we choose to verify the expression of the impedance on the aperture, given, from our results (7.13)-(7.15), by

$$\eta_a = \frac{\int_{S_1} \frac{\partial p}{\partial z} dS / \int_{S_1} dS}{ikp_c} = \frac{q_c}{ikp_c} + g = r_c(g_c) + ikl_c \sim \frac{\int_{S_2} g_c dS}{\int_{S_1} dS} + ik \frac{\int_{\Omega_2} dV}{\int_{S_1} dS},$$
(7.22)

in some particular case with well-tabulated results.

For this, we consider the delicate problem of a cylindrical cavity of radius a and depth d with an imperfectly reflective surface, characterized by impedances g_{cw} on the wall and g_{ce} on the bottom, with ka = o(1) and d/a = O(1).

So, from (7.22), we have,

$$\eta_a \sim \frac{g_{ce}\pi a^2 + g_{cw}2\pi ad}{\pi a^2} + ik\frac{\pi a^2 d}{\pi a^2} = g_{ce} + \frac{2g_{cw}d}{a} + ikd,$$
(7.23)

while, from the modal expansion of the field [22],

01

$$\eta_m = \frac{\frac{\partial p}{\partial z}}{ikp} |_{S_1} \simeq \frac{\alpha_1}{k} \frac{\left(1 + \frac{g_{ce} - \frac{\alpha_1}{k}}{g_{ce} + \frac{\alpha_1}{k}}e^{-2i\alpha_1 d}\right)}{\left(1 - \frac{g_{ce} - \frac{\alpha_1}{k}}{g_{ce} + \frac{\alpha_1}{k}}e^{-2i\alpha_1 d}\right)} \sim g_{ce} + i\alpha_1^2 \frac{d}{k} \simeq g_{ce} + \frac{2g_{cw}d}{a} + ikd,$$
$$-ikag_{cw}J_0(\xi_1) + \xi_1 J_1(\xi_1) = 0, \ \alpha_1^2 = k^2 - (\frac{\xi_1}{a})^2 \simeq k^2 - \frac{2ikg_{cw}}{a}.$$
(7.24)

As expected for a small cavity, η_m perfectly recovers η_a , and the expression (7.22) is validated.

Remark 15. For a perfectly rigid small cavity, we have $g_c = 0$ and thus $\eta_a = ikl_c$, and we recover the result given in [14, equ.(3)-(6)].

Remark 16. Similar developments can be made in electromagnetism, from the use of tensors for the expression of potentials (see appendix E). In this case, for the E (electric) and H (magnetic) fields on the aperture of a small cavity, we derive the approximations,

$$-Z_{0}(J_{c} \wedge \hat{z})g^{e} + M_{c} \sim Z_{0}(J_{c} \wedge \hat{z})((\frac{\int_{S_{2}} g_{c} dS}{\int_{S_{1}} dS} - g^{e}) + ik \frac{\int_{\Omega_{2}} dV}{\int_{S_{1}} dS}),$$

$$M_{c} = -(\hat{z} \wedge E)|_{S_{1}}, J_{c} = (\hat{z} \wedge H)|_{S_{1}},$$
(7.25)

when impedance boundary conditions are considered on the perturbated plane following

$$E - \widehat{n}(\widehat{n}E)|_{S_0 \setminus S_1} = Z_0 g^e(\widehat{n} \wedge H)|_{S_0 \setminus S_1}, E - \widehat{n}(\widehat{n}E)|_{S_2} = Z_0 g^e_c(\widehat{n} \wedge H)|_{S_2},$$
(7.26)

where \hat{n} is the outward normal to the surface, Z_0 is the free space impedance [3, 4],[12]. From (7.25), the problem for a shallow cavity is then reduced to the one of the scattering by a patch of relative impedance $(\frac{\int_{S_2} g_c dS}{\int_{S_1} dS} g_c^e + ik \frac{\int_{\Omega_2} dV}{\int_{S_1} dS})$ on S_1 inserted in an impedance plane. Equations, similar to (4.6) and (7.6), can be then derived.

8 Conclusion

We have developed novel integral equations which permit to simplify the calculus of the field scattered by a cavity in an impedance plane. For this, a new Green's function is used for the expression of the field in the cavity which leads to reduce the number of unknowns. Moreover, a particular attention is paid to the uniqueness of the solution. In the case of a small cavity, our equations are detailed and developed in a new form. In this case, analytical results are derived and our expression for approximate aperture impedance is validated.

A
$$\int_{S_2(\text{open})} G_b(r, r') \mu(r) dS|_{r' \in \Omega_2 \cup \Omega_2^i} = 0$$
 implies $\mu \equiv 0$

This appendix concerns the study of the solution $\mu(r)$ of

$$\mathcal{P}(r') = 0 \text{ in } \Omega \equiv \Omega_2 \cup \Omega_2^i, \tag{A.1}$$

where $\mathcal{P}(r') = \frac{k}{4\pi} \int_{S_2} G_b(r, r') \mu(r) dS$, and the proof that $\mu(r)$ (in some functions class) vanishes. S_2 is the surface of an open cavity in the plane z = 0, and the domain Ω_2^i (resp. S_2^i) is the symmetric of Ω_2 (resp. S_2) relatively to z = 0.

A.1 $\mu \equiv 0$ in the cases g = 0 (Neumann) or $g \to \infty$ (Dirichlet)

In the respective cases g = 0 (Neumann boundary condition) and $g \to \infty$ (Dirichlet boundary condition), we have

$$G_b(r,r')|_{g=0} = [G^0(r-r') + G^0(r-r'_{im})]$$

$$G_b(r,r')|_{g\to\infty} = [G^0(r-r') - G^0(r-r'_{im})]$$
(A.2)

and thus,

$$\mathcal{P}(r')|_{g=0} = \frac{k}{4\pi} \int_{\partial\Omega} G^0(r-r') \Xi_0(r) dS,$$

$$\mathcal{P}(r')|_{g\to\infty} = \frac{k}{4\pi} \int_{\partial\Omega} G^0(r-r') \Xi_\infty(r) dS$$
(A.3)

where $\Xi_0(r_{im}) = \Xi_0(r) = \mu(r)$ and $\Xi_{\infty}(r_{im}) = -\Xi_{\infty}(r) = -\mu(r)$. We assume that μ is a function, piecewise continuous (except possibly for singularities of μ at the edge of $\partial\Omega$), so that \mathcal{P} is continuous on $\partial\Omega$. We can then use a proof similar to the ones given by Colton and Kress in [20] to prove that $\mu(r) \equiv 0$.

The potential \mathcal{P} vanishes in Ω , and thus, by continuity, on $\partial\Omega$. Moreover, \mathcal{P} satisfies the Helmholtz equation and the Sommerfeld radiation condition at infinity in \mathbb{R}^3 . Hence by Rellich's uniqueness theorem generalized by Levine for non smooth domain [15], $\mathcal{P}(r')$ also vanishes outside Ω . We can then conclude, from the discontinuity property of the normal derivative of the single layer potential [20],

$$\frac{\partial \mathcal{P}(r')}{\partial n}|_{+} - \frac{\partial \mathcal{P}(r')}{\partial n}|_{-} = -\Xi(r'), \qquad (A.4)$$

at any non singular points of S_2 , where Ξ is Ξ_0 (resp. Ξ_∞) when g = 0 (resp. $g \to \infty$). that we have $\Xi \equiv 0$ and thus $\mu \equiv 0$.

A.2 A proof that $\mu \equiv 0$ for $g \neq 0$, $|g| < \infty$

In the definition taken when $g \neq 1$ in section 3.2.2, we notice that $G_b(r, r')|_{g=v} = G_a(r_{im}, r'_{im})|_{g=-v}$, and the problem is then equivalent to a boundary value problem in the upper half-space, concerning a perturbation in relief (image of the cavity) on a plane of impedance -g, with a field $u(r') = \mathcal{P}(r'_{im})$ vanishing inside and on the surface of the perturbation, and verifying the Sommerfeld conditions at infinity. For $\operatorname{Re}(-g) > 0$, we can use for this problem the uniqueness theorem of Levine [15, sect.7] and the discontinuity property of the normal derivative of the single layer potential [20], and deduce that $\mu \equiv 0$.

For $\operatorname{Re}(g) > 0$, this demonstration is no more valid, and we develop here a more general proof which uses that S_2 is an open surface.

A.2.1 Definition of the function \mathcal{P}_1

For this, we begin to define new functions \mathcal{P}_0 and \mathcal{P}_1 , and we write,

$$\mathcal{P}(r') = (\mathcal{P}_0 + 2ig\mathcal{P}_1)$$

$$\mathcal{P}_0(r') = \frac{k}{4\pi} \int_{S_2} (G^0(r - r') + G^0(r - r'_{im}))\mu(r)dS,$$

$$\mathcal{P}_1(r') = \frac{k}{4\pi} \int_{S_2} \mathcal{V}_b(r - r'_{im})\mu(r)dS$$
(A.5)

where, from (3.8), the function $\mathcal{V}_b(r) = -e^{ikgz} \mathcal{J}_{-g}(\rho, z)$ satisfies

$$\frac{\partial \mathcal{V}_b(r - r'_{im})}{\partial z} = \frac{e^{-ik|r - r'_{im}|}}{|r - r'_{im}|} + ikg\mathcal{V}_b(r - r'_{im})$$
$$= kG^0(r - r'_{im}) + ikg\mathcal{V}_b(r - r'_{im}).$$
(A.6)

with $r'_{im} \equiv (x', y', -z')$. We notice that $\mathcal{V}_b(r)$ is regular for z < 0, and has a weak singularity, like $\ln \rho$, at $\rho = 0$ for $z \ge 0$. Thus, the potential $\mathcal{P}_1(r')$ is an analytic function in $R^3 \setminus \Omega_c$, where Ω_c is the upper part of the cylinder along z-axis bounded by S_2^i , which is the image of S_2 .

A.2.2 A problem for \mathcal{P}_1 equivalent to the problem $\mathcal{P} \equiv 0$

Since \mathcal{P} vanishes in Ω , and $\mathcal{P}_0(r'_{im}) = \mathcal{P}_0(r')$, we can write that $\mathcal{P}_1(r'_{im}) = \mathcal{P}_1(r')$ in this domain. So, we have

$$\mathcal{P}_{1}(r') = \frac{k}{4\pi} \int_{S_{2}} \mathcal{V}_{b}(r - r'_{im})\mu(r)dS$$

$$\mathcal{P}_{1}(r'_{im}) = \mathcal{P}_{1}(r'), \ r' \in \Omega \equiv \Omega_{2} \cup \Omega_{2}^{i}$$

$$(\Delta + k^{2})\mathcal{P}_{1} = 0 \text{ in } R^{3} \backslash \Omega_{c}, \qquad (A.7)$$

where S_2 is an open surface. This implies reciprocally that $\mathcal{P} = 0$ in Ω . Indeed, from (A.6), we have

$$\partial_{z'} \mathcal{P}_1(r') - ikg \mathcal{P}_1(r') = \frac{k}{4\pi} \int_{S_2} kG^0(r - r'_{im})\mu(r)dS, - \partial_{z'} \mathcal{P}_1(r'_{im}) - ikg \mathcal{P}_1(r'_{im}) = \frac{k}{4\pi} \int_{S_2} kG^0(r - r')\mu(r)dS.$$
(A.8)

Adding both equations and using that $\mathcal{P}_1(r'_{im}) = \mathcal{P}_1(r'), \ \partial_{z'}(\mathcal{P}_1(r') - \mathcal{P}_1(r'_{im}))$ vanishes and $\mathcal{P}_1(r'_{im}) + \mathcal{P}_1(r') = 2\mathcal{P}_1(r')$, and we conclude, by definition of \mathcal{P} , that $\mathcal{P} = 0$ in Ω .

A.2.3 A proof that $\mu \equiv 0$, by the analysis of the singularities at the ends of S_2

The singularities of the field at the ends of S_2 , i.e. the singular behaviour in vicinity of the curve C_1 , depends on the geometry. For this, we denote \hat{n}_0 , the unit vector, normal to C_1 at r_0 and orthogonal to the normal \hat{n} to S_2 , and \hat{c} the unit vector tangent to C_1 , so that $(\hat{c}, \hat{n}, \hat{n}_0)$ is an orthonormal basis (figure 4), and (ρ, φ) the cylindrical coordinates associated to (\hat{n}, \hat{n}_0) , with $\rho \cos \varphi = \hat{n}_0 (r - r_0)$, $\rho \sin \varphi = -\hat{n} (r - r_0)$. We also denote \hat{y} the unit vector perpendicular to \hat{z} and to \hat{c} so that $(\hat{c}, \hat{y}, \hat{z})$ is an orthonormal basis.

Let us consider S'_2 , a part of S_2 bounded by an analytic arc C'_1 of C_1 , and consider to simplify, without losing generality, that the function $\mu(r)$ satisfies

$$\mu(r) = \mu_f(r) + \mu_a(r)$$

$$\mu_f(r) = \sum_{p \ge 1} a_p J_{\alpha_p}(k\rho),$$

$$\mu_a(r) = \sum_{m \ge 0} b_m \rho^m,$$
(A.9)

on S'_2 where the α_p are not entire numbers, $\alpha_p < \alpha_{p+1}$, $\alpha_1 > -1$, $a_1 \neq 0$ except if $\mu_f \equiv 0$, and $J_{\nu}(z) = (\frac{z}{2})^{\nu} \sum_{k \geq 0} \frac{(-z/4)^k}{k!\Gamma(\nu+k+1)}$ is the bessel function of order ν [19]. The terms

Figure 4: definitions of unit vectors on the curve C_1 defining the aperture

with powers of $\ln \rho$ could be considered in the method but are omitted for simplification. Thereafter, we prove that the conditions (A.7) on \mathcal{P}_1 imply the vanishing of μ_f and μ_a on S'_2 , and that, by the continuation principle through a hole and the nullity of \mathcal{P} in Ω_2 , $\mu \equiv 0$ on S_2 . To simplify the analysis, we will only detail the demonstration in the case where $(\hat{y}, \hat{n}_0) = \cos \Phi' \neq 0$.

$$\mu_a = 0$$
 on S'_2 when $\widehat{y}.\widehat{n}_0 = \cos \Phi' \neq 0$ on C'_1

Let us consider the analytic part of μ in vicinity of C'_1 and the singularities of \mathcal{P}_1 induced by it. Since we have

$$(\partial_z(\partial_y \mathcal{P}_1)(r) - ikg(\partial_y \mathcal{P}_1)(r))|_{r=r'_{im}} = \partial_y \frac{k}{4\pi} \int_{S_2} kG^0(r-r')\mu(r)dS,$$
(A.10)

a singularity appears (see [23] or appendix B), following

$$\partial_y \frac{k}{4\pi} \int_{S_2} k G^0(r - r') \mu(r) dS = -\frac{k \cos \Phi'}{2\pi} \mu(r_0) \ln |r' - r_0| + O(1), \tag{A.11}$$

as r' tends normally to $r_0 \in C'_1$. This implies, from $\partial_y \mathcal{P}_1(r') = O(1)$, that

$$(\partial_z(\partial_y \mathcal{P}_1(r)))|_{r=r'_{im}} = -\frac{k\cos\Phi'}{2\pi}\mu(r_0)\ln|r'-r_0| + O(1)$$
(A.12)

Considering the parity of $\mathcal{P}_1(r')$ (see (A.7)), and thus of $\partial_y \mathcal{P}_1(r')$, $\partial_z \partial_y \mathcal{P}_1$ is odd with respects to the plane z = 0, and (A.12) implies that μ vanishes on C'_1 so that $b_0 = 0$ in (A.9). In the same manner, the case of higher order terms of μ_a , $b_1\rho^1$, $b_2\rho^2$, ... can be considered successively with higher order y-derivatives of $\mathcal{P}_1(r')$, so that $b_m = 0$, $m \ge 0$.

$\mu_f = 0$ on S'_2 for arbitrary $\cos \Phi'$ on C'_1

Let us consider the fractional part μ_f of μ , and the (single layer) potential induced (or radiated) by it, which corresponds, to the expression of $\partial_z \mathcal{P}_1(r) - ikg\mathcal{P}_1(r)$ presented in (A.8). S'_2 is assumed to simplify with null curvature, and the results obtained in appendix B are used. Under this hypothesis, the potential has a fractional part of order $1 + \alpha_1$ ($\sim \rho^{1+\alpha_1}$ as $\rho \to 0$), which is thus the fractional order of $\partial_z \mathcal{P}_1$. We then deduce that \mathcal{P}_1 has a fractional order $2 + \alpha_1$. Considering the results in appendix B, the term $J_{\alpha_1}(k\rho)$ of μ_f radiates, like $\frac{4\pi}{k\sin(\nu\pi)}J_{1+\alpha_1}(k\rho')\cos((1+\alpha_1)\varphi')+O(J_{3+\alpha_1}(k\rho'))$, which does not contains $\rho^{2+\alpha_1}$ terms in its expansion, and thus the order $2 + \alpha_1$ of \mathcal{P}_1 comes from the next term $a_2J_{\alpha_2}(k\rho)$ in the expansion of μ_f . This implies $\alpha_2 = \alpha_1 + 1$, and $a_2 \neq 0$ if $a_1 \neq 0$. Consequently, when $a_1 \neq 0$, we can write,

$$\frac{k}{4\pi} \int_{S_2} kG^0(r - r')\mu(r)dS =
= \frac{1}{\sin(\alpha_1 \pi)} (a_1 J_{1+\alpha_1}(k\rho')\cos((1 + \alpha_1)\varphi') - a_2 J_{2+\alpha_1}(k\rho')\cos((2 + \alpha_1)\varphi'))
+ O(J_{3+\alpha_1}(k\rho')) + O(J_{1+\alpha_3}(k\rho')) + \text{entire function of } \rho'$$
(A.13)

as $\rho' \to 0$, with $\rho' \cos \varphi' = \hat{n}_0 (r' - r_0)$, $\rho' \sin \varphi' = -\hat{n} (r' - r_0)$, $\alpha_3 > \alpha_2 = \alpha_1 + 1$. Thus, from (A.8), we have

$$\begin{aligned} (\partial_{z} \mathcal{P}_{1}(r)) &- ikg \mathcal{P}_{1}(r))|_{r=r'_{im}} \\ &= \frac{1}{\sin(\alpha_{1}\pi)} (a_{1} J_{1+\alpha_{1}}(k\rho') \cos((1+\alpha_{1})\varphi') - a_{2} J_{2+\alpha_{1}}(k\rho') \cos((2+\alpha_{1})\varphi')) \\ &+ O(J_{3+\alpha_{1}}(k\rho')) + O(J_{1+\alpha_{3}}(k\rho')) + \text{entire function of } \rho' \end{aligned}$$
(A.14)

Therefore, from (A.7), and the parity of \mathcal{P}_1 and $\partial_z \mathcal{P}_1$, we derive that

$$a_{1}\cos((1+\alpha_{1})\Phi'+\varphi) = -a_{1}\cos((1+\alpha_{1})\Phi'-\varphi), a_{2}\cos((2+\alpha_{1})\Phi'+\varphi) = a_{2}\cos((2+\alpha_{1})\Phi'-\varphi).$$
(A.15)

Consequently, when $a_1 \neq 0$, we can write,

$$\cos((1 + \alpha_1)\Phi') = 0$$

$$\sin((2 + \alpha_1)\Phi') = 0$$
(A.16)

This implies $\cos \Phi' = 0$, and α_1 is entire, which is impossible by definition. We then deduce that the first order coefficient a_1 of μ_f is null, which induces, by definition, that $\mu_f \equiv 0$.

 μ vanishes on S'_2 implies $\mu \equiv 0$

From the previous results, it exists a subdomain S'_2 of S_2 where $\mu = 0$, that we can substract of the support of μ , assuming without losing generality, that $|\cos \Phi'| \neq 1$ along C'_1 . In this case, we can use the continuation principle through the hole S'_2 , and the field $\mathcal{P}(r')$, null in $\overline{\Omega}_2$, also vanishes outside the cavity below the plane z = 0.

Noticing the regularity of $\mathcal{P}_1(r')$ for z' < 0, and thus the continuity of the normal derivative of $\mathcal{P}_1(r')$ through S_2 , we can apply the discontinuity property of the normal derivative of single-layer potentials with free space Green's function [20],

$$\frac{\partial \mathcal{P}(r')}{\partial n}|_{+} - \frac{\partial \mathcal{P}(r')}{\partial n}|_{-} = -\mu(r), \qquad (A.17)$$

at any non singular points of S_2 , which implies, from the vanishing of the left side, that $\mu \equiv 0$.

A.2.4 Elements of proof for the particular case $\hat{y}.\hat{n}_0 = \cos \Phi' = 0$ on C_1

From the previous analysis, the fractional part μ_f vanishes for any Φ' , and we can then assume that μ is analytic. In the case where $\hat{y}.\hat{n}_0 = \cos \Phi' = 0$ on C_1 , we choose to study the function,

$$\mathcal{P}'(r') = (\partial_{z'} - ikg)\mathcal{P}(r') = \frac{k}{4\pi} \int_{S_2} G'_b(r, r')\mu(r)dS \tag{A.18}$$

where, from (3.26),

$$G'_{b}(r,r') = \partial_{z'}(G^{0}(r-r') + G^{0}(r-r'_{im})) - ikg(G^{0}(r-r') - G^{0}(r-r'_{im}))$$

= $(-\partial_{z} - ikg)(G^{0}(r-r') - G^{0}(r-r'_{im}))$ (A.19)

From $G'_b(r,r') = -G'_b(r,r'_{im})$, we have $\mathcal{P}'(r') = -\mathcal{P}'(r'_{im})$. The function \mathcal{P}' satisfies the Helmholtz equation in $\mathbb{R}^3 \setminus \Omega$, with Sommerfeld conditions at infinity. Since $\mathcal{P} = 0$ in Ω , \mathcal{P}' vanishes, like its derivatives, in Ω . Let us show that it is also the case for \mathcal{P}' outside Ω , then for \mathcal{P} , and thus for μ .

Since \mathcal{P}' vanishes along the plane z = 0, $(\hat{z}.\text{grad})^{2n}\mathcal{P}' = 0$ along $C_1, n \in N$. Using integration by parts and continuity for odd derivatives of \mathcal{P}' , we derive that $(\hat{z}.\text{grad})^{2n+1}\mathcal{P}' = 0$ along $C_1, n \in N$. We then consider to simplify that the surface S_c of the cylinder Ω'_c along z-axis, defined with a section C_1 , does not have common points with S_2 , except on C_1 , and that we have no essential sigularity. We then deduce that \mathcal{P}' vanishes on S_c . From the first Green's theorem and the properties of \mathcal{P}' , we have

$$\operatorname{Re}\left(\int_{R^{3}\backslash\Omega_{c}^{\prime}}-ik|\mathcal{P}^{\prime}(r)|^{2}+\frac{|\operatorname{grad}\mathcal{P}^{\prime}(r)|^{2}}{-ik}dV\right)=\lim_{a\to\infty}\int_{r=a}|\mathcal{P}^{\prime}(r)|^{2}dS,\tag{A.20}$$

Since $|\arg(ik)| \leq \pi/2$, both members have opposite signs, and thus vanish. We then derive, from Rellich's theorem and continuation principle [12], that $\mathcal{P}'(r) = 0$ in $\mathbb{R}^3 \setminus \Omega$. Since \mathcal{P} and all z-derivatives of \mathcal{P}' vanishes on S_2 , we derive that $\mathcal{P} = 0$ below S_2 , and, by continuation principle, everywhere below the plane z = 0.

We can then use the discontinuity property of the normal derivative of single layer potential (A.17), and deduce that $\mu \equiv 0$.

B Behaviour of single layer potentials on open surfaces

Let S be an open analytic, orientable surface in three-dimensional space bounded by a Jordan curve C, and C' an arc belonging to it. Let r' and r be two points, and $\mu(r)$ an analytical function defined for all $r \in S$ except possibly for a singularity on the edge C'. We study the behaviour of single layer potentials

$$U_0(r') = \int_S \frac{\mu(r)}{|r-r'|} dS, \ U_k(r') = \int_S \frac{\mu(r)e^{-ik|r-r'|}}{|r-r'|} dS \tag{B.1}$$

B.1 When $\mu(r) = O(1)$ on C'

If $\mu(r)$ is finite on C', we can write, from Rolf Leis [23], in vicinity of C'

$$grad(U_0(r')) = -\int_S \mu(r)\hat{n}\partial_n \frac{1}{|r-r'|} dS + \int_S \frac{grad_S(\mu(r))}{|r-r'|} dS + 2\int_S \frac{\hat{n}H\mu(r)}{|r-r'|} dS - \int_C \frac{\hat{n}_0\mu(r)}{|r-r'|} dc$$
(B.2)

where \hat{n}_0 is a unit vector, normal to C and orthogonal to the normal \hat{n} , grad_S is the surface gradient, H is a function depending on the characteristics of the surface. The line integral becomes logarithmically singular, while the other surface integrals are regular. The singularity, as $r' \notin C \to r_0$, r_0 being the projection of r' on C', can be described by

$$\int_{C} \frac{\widehat{n}_{0}\mu(r)}{|r-r'|} dc = -2\widehat{n}_{0}(r_{0})\mu(r_{0})\ln|r'-r_{0}| + O(1)$$
(B.3)

where \hat{c} is the unit vector, tangent to C' at r_0 , and $(\hat{c}, \hat{n}, \hat{n}_0)$ is an orthonormal basis [23]. More generally we notice from [23], that analytic μ does not induce singularities of fractional order in the expansion of U_0 and U_k .

B.2 When $\mu(r)$ is of fractional order

In the case of $\mu(r)$ of fractional order (with fractional power of $|r - r_0|$ near $r_0 \in C'$), it is possible to analyze the fractional part of the field, letting the curvature of the edge C'tending to 0, and $\mu(r)$ depending only on the distance ρ to the edge. In this case, we can write,

$$U_{k}(r') \sim -i\pi \int_{L} \mu_{f}(\rho) H_{0}^{(2)}(k|\overline{\rho} - \overline{\rho}'|) d\rho$$

$$\sim -i \int_{-i\infty}^{+i\infty} \int_{0}^{\infty} \mu_{f}(\rho) e^{-ik\rho \cos \alpha} d\rho e^{-ik\rho' \cos(\alpha - \varphi')} d\alpha, \qquad (B.4)$$

when $\rho' \to 0$, ρ' denoting the radial distance to the edge of the point r', with $\rho' \cos(\varphi') = \hat{n}_0(r'-r_0)$, $\rho' \sin(\varphi') = -\hat{n}(r'-r_0)$, $r_0 \in C'$, and $\mu_f(\rho) = \mu(r)$.

So, for $\mu_f(\rho) = J_{\nu}(k\rho) \sim (\frac{\beta}{k})^{-\nu} \lim_{\beta \to 0} J_{\nu}(\beta\rho), \ \nu = \alpha_1 > -1, \ \nu \neq 0, 1, 2, ...,$ we obtain $U_k(r')$, from [24, eq. 6.611.1] and [19, eq. 9.1.22], following

$$U_{k}(r') \sim -\frac{ie^{-i(1+\nu)\pi/2}}{k \, 2^{\nu}} \int_{-i\infty}^{+i\infty} \frac{1}{(\cos\alpha)^{1+\nu}} e^{-ik\rho'\cos(\alpha-\varphi')} d\alpha$$

$$\sim -\frac{ie^{-i(1+\nu)\pi/2}}{k \, 2^{\nu}} \int_{0}^{+i\infty} (\frac{1}{(\cos(\alpha+\varphi'))^{1+\nu}} + \frac{1}{(\cos(\alpha-\varphi'))^{1+\nu}}) e^{-ik\rho'\cos\alpha} d\alpha$$

$$\sim -\frac{i \, 4e^{-i(1+\nu)\pi/2}}{k} \cos((1+\nu)\varphi') \int_{0}^{+i\infty} e^{i(1+\nu)\alpha} e^{-ik\rho'\cos\alpha} d\alpha$$

$$\sim \frac{4\pi}{k \sin(\nu\pi)} \cos((1+\nu)\varphi') (J_{1+\nu}(k\rho') + \text{an entire function of } \rho'). \tag{B.5}$$

Then, using the discontinuity property of the normal derivative of U_k through S [20], and $2(1+\nu)J_{1+\nu}(k\rho')/k\rho' = J_{\nu}(k\rho') + J_{2+\nu}(k\rho')$ [19], we can rewrite (B.5) following

$$U_k(r') = \frac{4\pi}{k\sin(\nu\pi)} J_{1+\alpha_1}(k\rho') \cos((1+\alpha_1)\varphi') + D_a(r') + O(J_{3+\alpha_1}(k\rho'))$$
(B.6)

where $D_a(r')$ is an entire function of ρ' .

Remark 17. In the case of logarithmic behaviour, we can let $\mu(\rho) = \frac{1}{2} \ln(\frac{\rho}{2}) = \lim_{\nu \to 0^+} \partial_{\nu}(K_{\nu}(\rho)/\Gamma(\nu)),$ derive, from [24, eq. 6.611.3],

$$U_{k}(p) \sim -i \int_{-i\infty}^{+i\infty} \partial_{\nu} \left(\frac{\Gamma(1-\nu)\sin\nu\alpha}{\sin\alpha} \right) |_{\nu=0} e^{-ik\rho'\cos(\alpha-\varphi')} d\alpha,$$

$$\sim -i \int_{-i\infty}^{+i\infty} (\gamma\alpha + \frac{\alpha}{\sin\alpha}) e^{-ik\rho'\cos(\alpha-\varphi')} d\alpha, \ \gamma = .577...$$

$$\sim -i\gamma\varphi' \int_{-i\infty}^{+i\infty} e^{-ik\rho'\cos\alpha} d\alpha + o(\ln\rho) = 2\gamma\varphi' K_{0}(ik\rho) + o(\ln\rho).$$
(B.7)

Remark 18. Let $t_0(r_0) = a\hat{n}_0(r_0) + b\hat{n}(r_0)$ when $t_0\hat{n}_0 \neq 0$. Considering higher derivatives of U_0 , we can write

$$(t_0.grad)^n (U_0(r')) = -\int_S (t_0.grad_S)^{n-1} (\mu(r)) (t_0.\hat{n}) \frac{\partial}{\partial n} (\frac{1}{|r-r'|}) dS + 2\int_S \frac{(t_0.\hat{n}) H(t_0.grad_S)^{n-1} (\mu(r))}{|r-r'|} dS + \int_S \frac{(t_0.grad_S)^n (\mu(r))}{|r-r'|} dS - t_0 \int_C \frac{(t_0.\hat{n}_0) (t_0.grad_S)^{n-1} (\mu(r))}{|r-r'|} dc + \mathcal{R}_n$$
(B.8)

when $(\widehat{n}_0 \operatorname{grad}_S)^j(\mu(r_0)) = 0$ (or $(t_0(r_0) \operatorname{grad}_S)^j(\mu(r_0)) = 0$ when $t_0\widehat{n}_0 \neq 0$) on C' for j < n-1, and $(\widehat{n}_0 \operatorname{grad}_S)^{n-1}(\mu(r_0)) = O(1)$, with, in this case, \mathcal{R}_n which is continuous on C'. This result also applies if we replace U_0 by U_k since the behaviour of highest rank is the same for U_k and U_0 .

C About $\int_{S_1} G_{b(a)}(r, r') \mu(r) dS = 0$ on the aperture

Let us show that

$$\mathcal{U}_{b(a)}(r') \equiv \int_{S_1} G_{b(a)}(r, r') \mu(r) dS = 0 \text{ on } S_1$$
 (C.1)

implies $\mu(r) \equiv 0$, when $\mu(r) = A_0 + o(1)$ as $r \to r_c \in \partial S_1 \equiv C_1$, A_0 is a constant.

C.1 The case with G_b

From the analysis of Rolf Leis (see [23] or appendix B), $\mu(r) = A_0 + o(1)$ (as $r \to r_c \in \partial S_1 = C_1$) induces a singularity of derivative in vicinity of C_1 of the form $A_0 \ln |r - r_c|$. This implies, from (C.1) (i.e. $\mathcal{U}_b(r')|_{S_1} = 0$), that $A_0 = 0$.

We then choose to define the following functions u and w,

$$u(r') = \frac{-k}{4\pi} \int_{S_1} G_b(r, r') \mu(r) dS \text{ with } u(r') = 0 \text{ on } S_1,$$

$$w(r') = (\frac{\partial}{\partial z'} - ikg) u(r') = \frac{-2k}{4\pi} \int_{S_1} (\frac{\partial}{\partial z'}) G^0(r - r') \mu(r) dS, \qquad (C.2)$$

where we have used that

$$\left(\frac{\partial}{\partial z'} - ikg\right)G_b(r, r') \\
= \left(\frac{\partial}{\partial z'}\right)(G^0(r - r') + G^0(r - r'_{im})) - ikg(G^0(r - r') - G^0(r - r'_{im})).$$
(C.3)

Considering the property of the double layer potential with free space Green's function G^0 , and F the radiation pattern (or scattering diagram) of w, we can write

$$w(r') = -\mu(r') = O(1) \text{ on } S_1, \ w(r') = 0 \text{ on } S_0 \setminus \overline{S}_1,$$

$$w(r') = \frac{e^{-ik|r'|}}{|r'|} (F(\frac{r'}{|r'|}) + o(1)) \text{ when } r' \to \infty.$$
 (C.4)

Moreover, we have, from Leis's second theorem [23],

$$grad(w(r)) = o(1/|r - r_c|),$$
 (C.5)

when $r \to r_c \in C_1$, and, from u(r) = 0 on S_1 ,

$$\lim_{z \to 0^-} \frac{\partial w(r)}{\partial z} = \left(k^2 - \frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2}\right)u(r) - ikgw(r) \to -ikgw(r) \text{ on } S_1.$$
(C.6)

Thus, we can apply the Green's first theorem on the domain z < 0, and we obtain

$$\operatorname{Re}\left(\int_{z\leq 0^{-}} -ik|w(r)|^{2} + \frac{|\operatorname{grad}w(r)|^{2}}{-ik}dV\right) = \left(\int_{z=0^{-}} \operatorname{Re}(g)|w(r)|^{2}dS + \operatorname{Re}\left(\int_{0}^{2\pi} \int_{\pi/2}^{\pi} |F(\Theta,\phi)|^{2}\sin\Theta d\Theta d\phi\right).$$
(C.7)

For $\operatorname{Re}(g) \ge 0$ and $|\operatorname{arg}(ik)| \le \pi/2$, the left-hand term is ≤ 0 , while the right-hand term is ≥ 0 , and thus both terms vanish. So, we have,

$$w(r) = 0 \text{ as } z < 0, \text{ when } |\arg(ik)| < \pi/2, \operatorname{Re}(g) \ge 0,$$

$$w(r) = 0 \text{ as } z = 0^{-}, \text{ when } |\arg(ik)| = \pi/2, \operatorname{Re}(g) > 0,$$
(C.8)

which implies in these cases, from $w(r') = -\mu(r')$ on S_1 , that μ vanishes.

In the case g = 0, G_b can be replaced by $2G_0$ in the definition of u, and the demonstration of Colton and Kress [20, sect. 2] can be directly used to conclude that $\mu \equiv 0$.

Remark 19. the same property can be deduced for Reg < 0, except along the branch-cut of G_b with $Re(ik \cos \theta_1) = 0$, $g = \sin \theta_1$. For this, we can directly use the first Green's theorem with u instead of w, and deduce that $\mu \equiv 0$.

C.2 The case with G_a

If we consider in the definitions of u, G_a instead of G_b , and the domain z > 0 instead of the domain z < 0, we can directly use the first Green's theorem with u instead of w, and deduce that $\mu(r') = 0$ when $\operatorname{Re}(g) > 0$ or g = 0.

D On some analytical applications for the 2D case

Let us consider our developments in [11], for a scatterer illuminated by a plane wave coming from the direction $\varphi' = \varphi'_{\circ}$, for the geometry given in figure below,

Figure 5: impedance skew step geometry

Impedance boundary conditions are assumed,

$$\left(\frac{\partial}{\partial n} - ikg_1\right)p|_{\mathcal{L}_1} = 0, \ \left(\frac{\partial}{\partial n} - ikg\right)p|_{\mathcal{L}_\pm} = 0, \tag{D.1}$$

where \mathcal{L}_1 is the strip of length Δ , between both singularities, and the \mathcal{L}_{\pm} are the half planes going to infinity. From [11], the diffracted field given by,

$$u_d(\varphi') = \frac{-e^{-i\pi/4 - ik\rho_a}}{\sqrt{2\pi k\rho_a}} [F(\varphi')] + O(1/(k\rho)^{3/2}),$$
(D.2)

can be approximated, when $|k\Delta| \ll 1$, with

$$F(\varphi') \sim \frac{2D_0 ik\Delta\cos\varphi'_{\circ}\cos\varphi'}{(\cos\varphi'_{\circ} + \sin\theta_+)(\cos\varphi' + \sin\theta_+)} (-g\cos\Phi_a - \sin\Phi_a\sin\varphi' + g_1 - \frac{ik\Delta}{4}\sin(2\Phi_a)) + \frac{C_0(\cos\varphi' - g)\cos\varphi'_{\circ}}{(\cos\varphi'_{\circ} + g)(\sin\varphi' + \sin\varphi'_{\circ})} (e^{-2ik\Delta\sin\Phi_a\cos\varphi'} - 1)$$
(D.3)

where

$$D_{0} = \frac{1 + (iB_{0}/\pi)\sin\varphi_{\circ}'\sin\Phi_{a}}{1 + (iB_{0}/\pi)(g_{1} - g\cos\Phi_{a})}$$

$$C_{0} = 1 + (iB_{0}/\pi)(\sin\Phi_{a}(\sin\varphi_{\circ}' + \sin\varphi')/2)$$

$$B_{0} = -k\Delta(\ln(k\Delta/2) + \gamma_{0} - 1 + i\pi/2), \ \gamma_{0} \approx .577, \qquad (D.4)$$

Figure 6: 2D cavity geometry

From the results of our present paper, it is possible to consider a general curved lines \mathcal{L}_c instead of the straight line \mathcal{L}_1 , with $(\frac{\partial}{\partial n} - ikg_c)p|_{\mathcal{L}_c} = 0$, if we write

$$g_1 \sim \int_{\mathcal{L}_c} g_c \, dl / \Delta + ik(S_+ - S_-) / \Delta \tag{D.5}$$

where S_+ is the total surface of the cavity under the straight strip \mathcal{L}_1 , and S_- is the total surface of the protuberences above \mathcal{L}_1 . Let us notice that, in the above approximated expression of F, the first order in k is exact.

E The Green's tensors for an impedance plane in electromagnetism

In our method, a key point is the use of the 'below' Green's functions in the cavity which derives from our solution for an arbitrary impedance plane (passive or active). In a similar manner, an extension of our present work to electromagnetism needs the Green's tensors for an arbitrary impedance plane, that we now develop from [3]-[4]. For this, the electromagnetic field (E, H) that satisfies the Maxwell equation,

$$\operatorname{curl}(E) = -ik(Z_0H) - M, \, \operatorname{curl}(Z_0H) = ikE + Z_0J$$
 (E.1)

above the plane, and the impedance boundary conditions,

$$\widehat{z} \wedge E|_{z=0} = g^e(\widehat{z} \wedge (\widehat{z} \wedge (Z_0 H)))|_{z=0}, \tag{E.2}$$

or

$$(\partial_z - ikg^e)E_z|_{z=0} = 0, \ (\partial_z - ik/g^e)H_z|_{z=0} = 0,$$
 (E.3)

is considered.

E.1 The field radiated by bounded sources J and M in free space

The incident field, radiated by the sources J and M in free space, is given by

$$E_{inc} = \operatorname{curl}(G * M) + \frac{i}{k} (\operatorname{grad}(\operatorname{div}(.)) + k^2) (G * Z_0 J)$$

$$= \frac{1}{8\pi k^2} (-M * [\underline{\mathcal{D}}_{e,i}(r',r)] + Z_0 J * [\underline{\mathcal{F}}_{h,i}(r',r)])$$

$$Z_0 H_{inc} = -\operatorname{curl}(G * Z_0 J) + \frac{i}{k} (\operatorname{grad}(\operatorname{div}(.)) + k^2) (G * M)$$

$$= \frac{1}{8\pi k^2} (Z_0 J * [\underline{\mathcal{D}}_{h,i}(r',r)] + M * [\underline{\mathcal{F}}_{e,i}(r',r)])$$
(E.4)

where $G = -\frac{e^{-ik|r|}}{4\pi |r|}$, $|r| = \sqrt{x^2 + y^2 + z^2}$, and * is the convolution product.

E.2 The field scattered by the impedance plane

E.2.1 The tensors

Developing the expressions of potentials given in [3]-[4] for the scattered field (E_s, H_s) , we can write, when $M = M_{r'}\delta(r - r')$ and $J = J_{r'}\delta(r - r')$,

$$E_{s}(r) = -ik \operatorname{curl}(\mathcal{H}_{s} \widehat{z}) + (\operatorname{grad}(\operatorname{div}(.)) + k^{2})(\mathcal{E}_{s}\widehat{z})$$

$$= \frac{1}{8\pi k^{2}} ([\underline{\mathcal{F}}_{he}(r,r')].Z_{0}J_{r'} - [\underline{\mathcal{D}}_{he}(r,r')].M_{r'})$$

$$= \frac{1}{8\pi k^{2}} (Z_{0}J_{r'}.[\underline{\mathcal{F}}_{he}(r',r)] - M_{r'}.[\underline{\mathcal{D}}_{eh}(r',r)])$$

$$= \frac{1}{8\pi k^{2}} (Z_{0}J_{r'}.[\frac{1}{ik}\operatorname{curl}_{r'}([\underline{\mathcal{D}}_{eh}(r',r)])] - M_{r'}.[\underline{\mathcal{D}}_{eh}(r',r)])$$
(E.5)

and

$$Z_{0}H_{s}(r) = ik \operatorname{curl}(\mathcal{E}_{s}\,\widehat{z}) + (\operatorname{grad}(\operatorname{div}(.)) + k^{2})(\mathcal{H}_{s}\,\widehat{z})$$

$$= \frac{1}{8\pi k^{2}} ([\underline{\mathcal{D}}_{eh}(r,r')].Z_{0}J_{r'} + [\underline{\mathcal{F}}_{eh}(r,r')].M_{r'})$$

$$= \frac{1}{8\pi k^{2}} (Z_{0}J_{r'}.[\underline{\mathcal{D}}_{he}(r',r)] + M_{r'}.[\underline{\mathcal{F}}_{eh}(r',r)])$$

$$= \frac{1}{8\pi k^{2}} (Z_{0}J_{r'}.[\underline{\mathcal{D}}_{he}(r',r)] + M_{r'}.[\frac{1}{ik}\operatorname{curl}_{r'}([\underline{\mathcal{D}}_{he}(r',r)])]$$
(E.6)

where $\underline{\mathcal{F}}_{he(,eh)}(r',r)$ and $\underline{\mathcal{D}}_{eh(,he)}(r',r)$ are dyadic tensors. In these notations, we have $D.[\widehat{a}\ \widehat{b}] = (D.\ \widehat{a})\ \widehat{b}$, $[\widehat{a}\ \widehat{b}].D = \ \widehat{a}\ (\ \widehat{b}.D)$ and

$$[\underline{\mathcal{G}}(r,r')] \to [\underline{\mathcal{G}}(r',r)] \text{ if } (x,y,z) \leftrightarrow (x',y',z') \text{ and } (\widehat{x},\widehat{y},\widehat{z}) \leftrightarrow (\widehat{x}',\widehat{y}',\widehat{z}'). \tag{E.7}$$

The tensors verify the impedance boundary conditions,

$$\widehat{z} \wedge [(\underline{\mathcal{D}}_{he} + \underline{\mathcal{D}}_{h,i})(r, r')]|_{z=0} = -g^e (\widehat{z} \wedge \widehat{z} \wedge [(\underline{\mathcal{F}}_{eh} + \underline{\mathcal{F}}_{e,i})(r, r')]|_{z=0},$$

$$\widehat{z} \wedge [(\underline{\mathcal{F}}_{he} + \underline{\mathcal{F}}_{h,i})(r, r')]|_{z=0} = g^e (\widehat{z} \wedge \widehat{z} \wedge [(\underline{\mathcal{D}}_{eh} + \underline{\mathcal{D}}_{e,i})(r, r')])|_{z=0},$$
(E.8)

and can be written,

$$\underline{\mathcal{F}}_{he(,eh)} \equiv -\mathcal{B}(\underline{B}_{h(,e)}) + \mathcal{A}(\underline{A}_{e(,h)})
\underline{\mathcal{D}}_{he(,eh)} \equiv \mathcal{B}(\underline{A}_{h(,e)}) + \mathcal{A}(\underline{B}_{e(,h)})$$
(E.9)

where

$$\begin{aligned} \left[\mathcal{A}(\underline{B}_{e(,h)})(r,r')\right] &= \\ &= \left[ik(\widehat{x}\partial_x + \widehat{y}\partial_y + \widehat{z}\partial_z)(\widehat{y}'\partial_x - \widehat{x}'\partial_y)(\partial_z \mathcal{S}_{e(,h)}(r,r')) + \right. \\ &+ \left.ik^3\widehat{z}(\widehat{y}'\partial_x - \widehat{x}'\partial_y)(\mathcal{S}_{e(,h)}(r,r'))\right] \end{aligned} \tag{E.10}$$

$$\begin{aligned} [\mathcal{B}(\underline{A}_{e(,h)})(r,r')] &= \\ &= [ik(\widehat{x}\partial_y - \widehat{y}\partial_x)(\widehat{x}'\partial_x + \widehat{y}'\partial_y + \widehat{z}'\epsilon\partial_z)(\epsilon\partial_z \mathcal{S}_{e(,h)}(r,r')) + \\ &+ ik^3(\widehat{x}\partial_y - \widehat{y}\partial_x)\widehat{z}'(\mathcal{S}_{e(,h)}(r,r'))] \end{aligned}$$
(E.11)

$$\begin{aligned} \left[\mathcal{A}(\underline{A}_{e(,h)})(r,r')\right] &= \\ &= \left[(\widehat{x}\partial_x + \widehat{y}\partial_y + \widehat{z}\partial_z)(\widehat{x}'\partial_x + \widehat{y}'\partial_y + \widehat{z}'\epsilon\partial_z)(\epsilon\partial_{z^2}\mathcal{S}_{e(,h)}(r,r')) + \right. \\ &+ k^2 \,\widehat{z}(\widehat{x}'\partial_x + \widehat{y}'\partial_y + \widehat{z}'\epsilon\partial_z)(\epsilon\partial_z\mathcal{S}_{e(,h)}(r,r')) + \\ &+ k^2(\widehat{x}\partial_x + \widehat{y}\partial_y + \widehat{z}\partial_z)(\widehat{z}')(\partial_z\mathcal{S}_{e(,h)}(r,r')) + \\ &+ \,\widehat{z}\,\widehat{z}'k^4(\mathcal{S}_{e(,h)}(r,r'))\right] \end{aligned} \tag{E.12}$$

$$[\mathcal{B}(\underline{B}_{e(,h)})(r,r')] = = [-k^2(-\widehat{x}\partial_y + \widehat{y}\partial_x)(\widehat{x}'\partial_y - \widehat{y}'\partial_x)(\mathcal{S}_{e(,h)}(r,r'))], \qquad (E.13)$$

with $\epsilon = -1$, $\hat{x}' \equiv \hat{x}$, $\hat{y}' \equiv \hat{y}$, $\hat{z}' \equiv \hat{z}$. The functions $\mathcal{S}_{e(h)}$ verify the conditions [3],

$$(\partial_z - ikg^{e(,h)})\mathcal{S}_{e(,h)}(r,r') = (\partial_z + ikg^{e(,h)})\mathcal{S}_i(r_{im},r'))|_{z=0},$$
(E.14)

where $g^h = 1/g^e$, $r_{im} - r = 2\widehat{z}.r$, $\mathcal{S}_i(r, r'_{im}) = \mathcal{S}_i(r_{im}, r')$, and

$$S_{i}(r,r') = (e^{ik|\widehat{z}.(r-r')|}E_{1}(ik(|(r-r')| + |\widehat{z}.(r-r')|) + e^{-ik|\widehat{z}.(r-r')|}(E_{1}(ik(|(r-r')| - |\widehat{z}.(r-r')|)) + 2\ln|\widehat{z}\wedge(r-r')|)), \quad (E.15)$$

In a similar manner, the functions $\underline{\mathcal{F}}_{h,i(e,i)}$ and $\underline{\mathcal{D}}_{h,i(e,i)}$ can be also expressed like $\underline{\mathcal{F}}_{he(,eh)}$ and $\underline{\mathcal{D}}_{he(,eh)}$, if we take $\mathcal{S}_i(r,r')$ in place of $\mathcal{S}_{e(,h)}(r,r')$ in (E.9)-(E.13) and $\epsilon = 1$ (instead of $\epsilon = -1$).

E.2.2 Expressions of $S_{e(h)}(r, r')$ and some properties

The expressions of $\mathcal{S}_{e(h)}(r, r')$ are given [3]-[4] by,

$$\mathcal{S}_{e}(r,r') = (\mathcal{S}_{i}(r_{im},r') + \sum_{\epsilon'=-1,1} \frac{-2g^{e}}{(g^{e} - \epsilon')} (\mathcal{V}_{\epsilon'} + \epsilon' \mathcal{K}_{g^{e}}))(x - x', y - y', -z - z'),$$

$$\mathcal{S}_{h}(r,r') = (-\mathcal{S}_{i}(r_{im},r') + \sum_{\epsilon'=-1,1} \frac{2g^{e}}{(g^{e} - \epsilon')} (\mathcal{V}_{\epsilon'} + \epsilon' \mathcal{K}_{g^{h}}))(x - x', y - y', -z - z'), \quad (E.16)$$

for $z \ge 0$, $z' \ge 0$, $r_{im} \equiv (x, y, -z)$. The functions $\mathcal{V}_{\epsilon'}$ and \mathcal{K}_g , which satisfy the Helmholtz equation above the plane, are given by

$$\mathcal{V}_{\epsilon'}(x, y, -z) = e^{\epsilon' i k z} (E_1(i k(|r| + \epsilon' z)) + (1 - \epsilon') \ln \rho),$$

$$\mathcal{K}_g(x, y, -z) = e^{i k g z} \mathcal{J}_g(\rho, -z),$$
 (E.17)

for $z \ge 0$, $\rho = \sqrt{x^2 + y^2}$, $g = g^e$ or $g = g^h$, $g^h = 1/g^e$. Let us notice that we have

$$\frac{\partial}{\partial z} \mathcal{S}_{i}(r_{im}, r') = ik(e^{ik(z+z')}E_{1}(ik(|r_{im} - r'| + (z+z'))) - e^{-ik(z+z')}(E_{1}(ik(|r_{im} - r'| - (z+z'))) + 2\ln\rho)),$$

$$\frac{\partial^{2}}{\partial z^{2}} \mathcal{S}_{i}(r_{im}, r') = -2ik\frac{e^{-ik|r_{im} - r'|}}{|r_{im} - r'|} - k^{2} \mathcal{S}_{i}(r_{im}, r'),$$
(E.18)

and

$$\frac{\partial}{\partial z}(\mathcal{V}_{\epsilon'} + \epsilon'\mathcal{K}_g)(x, y, -z) = ik\epsilon'(\mathcal{V}_{\epsilon'} + g\,\mathcal{K}_g)(x, y, -z),$$

$$\frac{\partial^2}{\partial z^2}(\mathcal{V}_{\epsilon'} + \epsilon'\mathcal{K}_g) = -ik\epsilon'((\epsilon'-g)\frac{e^{-ik|r|}}{|r|} - ik(\epsilon'\mathcal{V}_{\epsilon'} + g^2\,\mathcal{K}_g)),$$

$$\sum_{\epsilon'=-1,1} \frac{-2g^e}{(g^e - \epsilon')}\frac{\partial^2}{\partial z^2}(\mathcal{V}_{\epsilon'} + \epsilon'\mathcal{K}_{g^e}) = 2k^2\sum_{\epsilon'=-1,1} \frac{g^e(\mathcal{V}_{\epsilon'} + \epsilon'(g^e)^2\,\mathcal{K}_{g^e})}{(g^e - \epsilon')},$$

$$\sum_{\epsilon'=-1,1} \frac{2g^e}{(g^e - \epsilon')}\frac{\partial^2}{\partial z^2}(\mathcal{V}_{\epsilon'} + \epsilon'\mathcal{K}_{g^h}) = -4ik\frac{e^{-ik|r|}}{|r|} - 2k^2\sum_{\epsilon'=-1,1} \frac{(g^e\mathcal{V}_{\epsilon'} + \epsilon'g^h\mathcal{K}_{g^h})}{(g^e - \epsilon')}, \quad (E.19)$$

for $z \ge 0$. The term $\ln \rho$ does not contribute to the field, except to suppress a singularity due to $E_1(ik(|r| - |z|))$ at $\rho = 0$ [3]. From the behaviour of \mathcal{J}_g , $\mathcal{S}_{e(,h)}(r',r)$ remains definite for $g^e = 1$ because $\mathcal{V}_{\epsilon'=1} + \mathcal{K}_{g^e} \to 0$ when $g^e \to 1$, while it is singular for $g^e = -1$. Moreover, when $g^h = (g^e)^{-1} \to \infty$, we have $g^h \mathcal{K}_{g^h} \to -\frac{e^{-ik|r|}}{ik|r|}$.

Remark 20. In the case of the radiation of surface sources [12],

$$M = -\widehat{n} \wedge E \,\delta_S, \ J = \widehat{n} \wedge H \,\delta_S, \tag{E.20}$$

where E and H satisfy the equations of Maxwell, it is important to notice that,

$$Z_0 div(J) = Z_0 div_S(\widehat{n} \wedge H\delta_S) = -ik\widehat{n}.E\,\delta_S - Z_0(\widehat{n} \wedge H).v\delta_{\partial S},$$

$$div(M) = -div_S(\widehat{n} \wedge E\delta_S) = -ikZ_0\widehat{n}.H\,\delta_S + (\widehat{n} \wedge E).v\delta_{\partial S},$$
 (E.21)

where \hat{n} is the normal to S, v is the geodesic normal to ∂S directed outside S, and δ_S (resp. $\delta_{\partial S}$) is the Dirac surface (resp. line) function (see in particular [25, (A.15) in appendix of section 6]).

Remark 21. We notice that

$$curl_{r}([\underline{\mathcal{D}}_{he(,eh)}(r,r')].C_{r'}) = ik([\underline{\mathcal{F}}_{eh(,he)}(r,r')].C_{r'}),$$

$$curl_{r}([\underline{\mathcal{F}}_{he(,eh)}(r,r')].C_{r'}) = -ik([\underline{\mathcal{D}}_{eh(,he)}(r,r')].C_{r'}),$$
(E.22)

and

$$D_r [\underline{\mathcal{F}}_{he(,eh)}(r,r')] . C_{r'} = C_{r'} [\underline{\mathcal{F}}_{he(,eh)}(r',r)] . D_r,$$

$$D_r [\underline{\mathcal{D}}_{he(,eh)}(r,r')] . C_{r'} = C_{r'} [\underline{\mathcal{D}}_{eh(,he)}(r',r)] . D_r,$$
 (E.23)

with $C_{r'} = c_x \hat{x}' + c_y \hat{y}' + c_z \hat{z}'$, $D_r = d_x \hat{x} + d_y \hat{y} + d_z \hat{z}$ being two constant vectors.

Remark 22. The tensors also satisfy,

$$\begin{aligned} &[\mathcal{A}(\underline{B}_{e(,h)})(r,r')].C_{r'} = \\ &= ik(grad(div(\widehat{z}.)) + k^{2}\widehat{z}.)((C_{r'}^{t} \wedge \widehat{z})grad(\mathcal{S}_{e(,h)}(r,r'))) \\ &= [ik(\widehat{x}\partial_{x} + \widehat{y}\partial_{y})(\widehat{y}'\partial_{x} - \widehat{x}'\partial_{y})(\partial_{z}\mathcal{S}_{e(,h)}(r,r')) + \\ &+ ik\widehat{z}(\widehat{y}'\partial_{x} - \widehat{x}'\partial_{y})(\partial_{z^{2}} + k^{2})\mathcal{S}_{e(,h)}(r,r')].C_{r'}, \end{aligned}$$
(E.24)

$$\begin{aligned} [\mathcal{B}(\underline{A}_{e(,h)})(r,r')].C_{r'} &= \\ &= ik \, curl(\widehat{z}(\epsilon \partial_z (C_{r'}^t grad(\mathcal{S}_{e(,h)}(r,r')))) + \\ &+ c_z((\partial_{z^2} + k^2)\mathcal{S}_{e(,h)}(r',r))) \\ &= [ik((\widehat{x}\partial_y - \widehat{y}\partial_x)(\widehat{x'}\partial_x + \widehat{y'}\partial_y)\epsilon \partial_z \mathcal{S}_{e(,h)}(r,r') + \\ &+ (\widehat{x}\partial_y - \widehat{y}\partial_x)\widehat{z'}(\partial_{z^2} + k^2)\mathcal{S}_{e(,h)}(r,r'))].C_{r'}, \end{aligned}$$
(E.25)

$$\begin{aligned} [\mathcal{A}(\underline{A}_{e(,h)})(r,r')] \cdot C_{r'} &= \\ &= (grad(div(\hat{z}.)) + k^2 \hat{z}.)(C_{r'}^t(\epsilon \partial_z grad(\mathcal{S}_{e(,h)}^\epsilon(r,r'))) + \\ &+ c_z((\partial_{z^2} + k^2)\mathcal{S}_{e(,h)}(r,r'))) \\ &= [\epsilon \partial_{z^2}(\hat{x}\partial_x + \hat{y}\partial_y)(\hat{x}'\partial_x + \hat{y}'\partial_y)\mathcal{S}_{e(,h)}(r,r') + \\ &+ \partial_z(\hat{x}\partial_x + \hat{y}\partial_y)(\hat{z}')(\partial_{z^2} + k^2)\mathcal{S}_{e(,h)}(r,r') + \\ &+ \hat{z}(\hat{x}'\partial_x + \hat{y}'\partial_y)(\partial_{z^2} + k^2)(\epsilon \partial_z \mathcal{S}_{e(,h)}(r,r')) + \\ &+ \hat{z}\hat{z}'(\partial_{z^2} + k^2)(\partial_{z^2} + k^2)\mathcal{S}_{e(,h)}(r,r')] \cdot C_{r'}, \end{aligned}$$
(E.26)

$$\begin{aligned} [\mathcal{B}(\underline{B}_{e(,h)})(r,r')].C_{r'} &= \\ &= ik \, curl(\widehat{z}(ik(C_{r'}^t \wedge \widehat{z}) grad(\mathcal{S}_{e(,h)}(r,r'))))) \\ &= [-k^2(-\widehat{x}\partial_y + \widehat{y}\partial_x)(\widehat{x}'\partial_y - \widehat{y}'\partial_x)(\mathcal{S}_{e(,h)}(r,r'))].C_{r'}, \end{aligned}$$
(E.27)

where $C_{r'} = C_{r'}^t + c_z \hat{z}'$, and, from the Helmholtz equation satisfied by $\mathcal{S}_{e(h)}$,

$$[\mathcal{B}(\underline{B}_{e(,h)})(r,r')].C_{r'} =$$

$$= -k^{2}((c_{x}\partial_{x} + c_{y}\partial_{y})(\widehat{x}\partial_{x} + \widehat{y}\partial_{y}) +$$

$$+ (c_{x}\widehat{x} + c_{y}\widehat{y})(\partial_{z^{2}} + k^{2}))(\mathcal{S}_{e(,h)}(r,r')). \qquad (E.28)$$

References

- S.N. Chandler-Wilde, A.T. Peplow, 'A boundary integral equation formulation for the Helmholtz equation in a locally perturbed half-plane', ZAMM, 85, 2, pp.79-88, 2005.
- [2] E.L. Shenderov, 'Diffraction of a sound wave by the open end of a flanged waveguide with impedance walls', Acoustical physics, 46, 6, pp.716-727, 2000.
- [3] J.M.L. Bernard, 'On the expression of the field scattered by a multimode plane', The Quarterly Journal of Mechanics and Applied Mathematics, pp. 237-266, 63, 3, 2010.
- [4] J.M.L. Bernard, 'On a novel expression of the field scattered by an arbitrary constant impedance plane', Wave Motion, 48, 7, pp.634-645, 2011.
- [5] R.F. Harrington, J.R. Mautz, 'A generalized network formulation for aperture problems', IEEE trans. AP, 24, 6, pp.870-873, 1976.
- [6] Y. Xu, 'Well-posedness of integral equations for modeling electromagnetic scattering from cavities', Radio Science, 43, 5, RS5001, 2008.
- J.S. Asvestas, R.E. Kleinman, 'Electromagnetic scattering by indented screens', IEEE Trans. Ant. Propag., 42, pp.22-30, 1994.

- [8] W.D. Wood, A.W. Wood, 'Development and numerical solution of integral equations for electromagnetic scattering from a trough in a ground plane', IEEE Trans. Ant. Propag., 47, pp.1318-1322, 1999.
- [9] Y. Xu, C.F. Wang, Y.B. Gan, Two integral equations for modeling electromagnetic scattering from indented screens', IEEE Trans. Ant. Propag., 53, pp.275-282, 2005.
- [10] C.F. Wang, Y.B. Gan, G.A. Thiele, 'Comments on "a field iterative method for computing the scattered electric field at the apertures of large perfectly conducting cavities" ', IEEE Trans. Ant. Propag., 53, pp.2129-2131, 2005.
- J.M.L. Bernard, 'A spectral approach for scattering by impedance polygons', Quart. J. Mech. Appl. Math., 59, 4, pp.517-550, 2006.
- [12] D.S. Jones, 'The theory of electromagnetism', Pergamon Press, 1964.
- [13] P.H. Pathak, 'High frequency electromagnetic scattering by open-ended waveguide cavities', Radio Science, 26, 1, pp. 211-218, 1989.
- [14] G.R. Plitnik, W.J. Strong, 'Numerical method for calculating input impedance of the oboe', JASA, 65, 3, pp.816-825, 1979.
- [15] L.M. Levine, 'A uniqueness theorem for the reduced wave equation', Comm. on pure and appl. Math., vol. 17, pp. 147-176, 1964.
- [16] D.S. Jones, 'the eigenvalues of $\Delta u + k^2 u = 0$ when the boundary conditions are given on semi-infinite domains', Math. Proc. of the Cambridge Phil. Soc., 49, pp. 668-684, 1953.
- [17] L.M. Brekhovskikh, 'Waves in layered media', Academic Press, 1980.
- [18] J.R. Wait, 'Electromagnetic wave theory', Harper and Row Publishers, 1985.
- [19] M. Abramowitz, I. Stegun, 'Handbook of mathematical functions', Dover, Inc., 1972.
- [20] D. Colton, R. Kress, 'The unique solvability of the null field equations of acoustics', Quarterly Journal of Mech. and Appl. Math., 36, 1, pp. 87-95, 1983.
- [21] S.N. Chandler-Wilde, D.C. Hothersall, 'Sound propagation above an inhomogenous impedance plane', J. Sound and Vibration, 98, 4, pp.475-491, 1985.
- [22] P.M. Morse, 'the transmission of sound inside pipes', JASA, 11, pp.205-210, 1939.
- [23] R. Leis, 'The influence of edges and corners on potential functions of surface layers', Arch. Rational Mech. and Analysis, 7, 1, pp.212-223, 1961.
- [24] I.S. Gradshteyn, I.M. Ryzhik, 'Tables of integrals, Series, and Products', Academic Press, Inc., 1994.
- [25] D.S. Jones 'Methods in electromagnetic wave propagation', OUP/IEEE press, 1994.