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Abstract

In 2002, Després and Lagoutière [Després and Lagoutière (2002)] proposed a low-diffusive advection
scheme for pure transport equation problems, which is particularly accurate for step-shaped solu-
tions, and thus suited for interface tracking procedure by a color function. This has been extended
by Kokh and Lagoutière [Kokh and Lagoutière (2010)] in the context of compressible multifluid flows
using a five-equation model. In this paper, we explore a simplified variant approach for gas-liquid
three-equation models. The numerical scheme has two ingredients: a robust remapped Lagrange
solver for the solution of the volume-averaged equations, and a low diffusive compressive scheme
for the advection of the gas mass fraction. Numerical experiments show the performance of the
computational approach on various flow reference problems: dam break, sloshing of a tank filled
with water, water-water impact and finally a case of Rayleigh-Taylor instability. One of the advan-
tage of the present interface capturing solver is its natural implementation on parallel processors
or computers. In particular, we are confident on its implementation on Graphics Processing Units
(GPU) with high speedups.

Keywords: numerical method, multiphase flow, air-water flow, free boundary, interface capturing,
compressible fluid, finite volume, Lagrange-remap solver, advection scheme, parallel computing,
many-core, GPU, numerical analysis, wave breaking, sloshing, impact problem

1. Introduction

Simulation of free surface flows knows an increasing interest as an essential predictive tool for
innovative Engineering designs into many fields of applications. This includes for instance the safety
study of water dams, tsunamis, the extraction of offshore petroleum, the sizing of Liquified Natural
Gas (LNG) carriers, processes of phase separation, waste water treatment, flocculation processes,
bio-Engineering, medical applications, etc. The evolution of the interfaces between phases and the
consecutive complex dynamics need to be simulated for the understanding of the flows and the
process optimization in the industrial case. For gas-liquid applications involving fast dynamics,
numerical models have to be able to capture most of the flow features, e.g.:

 wave formation and wave breaking;

 formation of air pockets;

 ejection, fragmentation of liquid droplets;
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 Archimedes buoyancy effect with rising of bubbles and fall of droplets;

 turbulence;

 effects of gas compressibility inducing a gas-to-liquid response by a pressure wave, etc.

In this paper, we consider gas-liquid two-phase problems. The strong ratio of mass density between
gas and liquid is known to be a source of numerical stiffness and instability. Therefore robust
computational approaches supporting high density ratio have to be considered. Among the family
of conservative Finite Volume methods (FVM), the Lagrange-Remapped solvers [Van Leer (1979);
Woodward and Colella (1984); Benson (1992); Bailey (2003); Heuzé et al. (2009); Arber et al.
(2001)...] provide robustness and stability with proven mathematical properties of positiveness and
entropy compatibility. We here consider a staggered Lagrange-Remap solver where the Lagrange
step enables for a multidimensional evolution of the fluids while a direction-by-direction projection
process allows us to do some conservative balances on a fixed cartesian grid. Numerical stability is
ensured by standard pseudo-viscosity terms, detailed in an appendix at the end of this paper.

The issue of an interface capturing algorithm providing robustness, accuracy, conservation of
volume and mass while not being too much computationally intensive is still the object of today’s
active publications. There is of course a lot of literature on this subject as for instance about interface
tracking methods which reconstruct the interface according to the knowledge of the volume or mass
fraction (level set methods [Sethian (1999)], volume-of-fluid (VOF) methods [Noh and Woodward
(1976); Youngs (1985)] or MOF (Moment-of-Fluid) methods [Dyadechko and Shashkov (2005)]).
An other celebrated class is the one of interface capturing methods by means of a color function
transport equation in the form,

∂tz + u · ∇z = 0, z ∈ {0, 1}

with more or less sophistication levels including high-order schemes, compressive flux limiters, ar-
tificial compression stages, local adaptive mesh refinement (AMR) [Berger and Colella (1989)], a
posteriori methods in which an anti-diffusion phase is added after the projection (or the advection)
of the quantities, use of pseudo-velocities to correct the truncation error of the numerical scheme [So
et al. (2011); Hill and Szmelter (2011); Navaro (2002)...], Eulerian methods with Lagrangian track-
ing of the interface (VFFC-ENIP [Loubère et al. (2012)]), etc. These methods have been proved to
be very efficient. But the price to pay is the relative important implementation and computational
effort. For parallel computer architectures, the parallel implementation may be tricky or require a
tedious work. To summarize what can be said is that each method in the literature shares both ad-
vantages and drawbacks. The combination of the three properties conservation-accuracy-robustness
is actually highly constrained. The parallel computing aspect may also add strong constraints with
heavy programming efforts. Regarding interface capturing methods with a colored functions, there
is two points of view: either a threshold on z (say z = 1

2) which discriminates the fluid zones as
level sets do, or one considers a possibly smoothed colored function involving a smoothed transition
between both fluids. In this case, some “regularization” closure has to be defined into the model.
The “uncertainty” related to a z belonging to on the open interval (0, 1) has to be expressed, for
example by a volume-averaged mixture closure. This is discussed in the next section.

In this work, we have decided to explore the use of a relatively recent compressive advection
scheme, initially proposed by Després and Lagoutière. The idea is to combine both upwinding
and downwinding discretizations for the gradient operators. The upwinding process is known to
provide strong stability in Lp norm under a standard CFL condition while pure downwinding is un-
conditionally unstable because of its over-compressive interpretation. Després and Lagoutière then
proposed a combination of both upwinding and downwinding “at the limit of stability”, providing
the most compressive solver while ensuring stability with a local discrete maximum principle. This
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computational approach has been considered in Kokh and Lagoutière [Kokh and Lagoutière (2010)]
and more recently in [Billaud Friess et al. (2011); Billaud Friess and Kokh (2012)] for multiphase
flow problems with a “five-equation” model that includes the transport of a color function. In fact
the color variable z acts for the interface location whereas another variable y, a mass gas fraction
is necessary for conservation purposes. We present here an adaptation of the Després-Lagoutière
advection scheme to the case of a simpler “three-equation” gas-liquid volume averaged model. In
our case, a gas mass fraction cg also serves as the color variable. We rather reformulate the mass
conservation equations using a gas volume fraction α which is of course a function of cg. We use
isentropic pressure laws per phase, the liquid is seen as a (weakly) compressible fluid. Viscous effects
are neglected and one considers only a unique fluid velocity u leading to a momentum conservation
equation. The resulting system is supposed to be hyperbolic according to the choices of pressure
laws. In this work, as a first step we do not consider surface tension effects.

Another motivation that justifies our choice of that type of interface capturing method based
on the solution of a transport equation of an Eulerian cartesian grid is that we believe they are
very promising for GPU computing. While standard PDE discretization methods (mesh, array data
structures, sparse matrices, memory) have been designed and optimized a few decades ago on the
assumption of a sustainable CPU-global memory model, parallel many-core processing architecture
is completely different such that data structures organized by grids of blocks are particularly suitable
for finite difference/volume methods on cartesian grids.
At the present time, our computations are performed sequentially on a standard CPU for accuracy
assessment of the numerical method and its improvement. Ongoing works are dedicated to the
GPU programming of such a method. Let us finally remark that the last update of the NVIDIA
CUDA Software Development Kit, CUDA 5 includes application programming interfaces (API) for
Adaptive Mesh Refinement (AMR). AMR methods of course could be used with the low-diffusive
interface capturing technique for a more accurate level of interface resolution.

2. Three-equation two-fluid model and equations of state

There are many models for gas-liquid two-phase flows subject to gravity. In our targeted field
of applications of flow with topology changes like wave breaking, presence of air pockets, the Saint-
Venant shallow-water equations involving a variable height of the interface are not relevant. We
must resort to a multi-fluid system of equations. In this sense, the simplest gas-liquid two-phase
model is a phase-separated model composed of inviscid fluids, separated by a free boundary Γ(t).
For the sake of simplicity, let us consider regular smooth solutions with smooth interface boundary.
At instant t, for each point x, one has to consider the continuity equation for the present phase k

∂tρk +∇ · (ρku) = 0

where ρk is the mass density of the fluid k, k = g or ℓ (g (resp. ℓ) stands for the gas (resp. for the
liquid)) and u is the fluid velocity. The momentum balance equation reads, for the phase k being
present at point x

∂t(ρku) +∇ · (ρku⊗ u) +∇p = ρkg

considering a pressure p and a gravity field g. Denoting by z = z(x, t) the indicator function that
returns 0 if the current fluid is the liquid and 1 if it is the gaseous phase, one can define a mass
density ρ,

ρ = zρg + (1− z)ρℓ.

Thus the mass conservation equations write under a condensed form for any phase

∂tρ+∇ · (ρu) = 0.
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For the same reason, we have the global momentum equation

∂t(ρu) +∇ · (ρu⊗ u) +∇p = ρg.

The indicator function z is simply convected by the flow field because its Lagrangian derivative is
zero:

∂tz + u · ∇z = 0.

One could also define a mass gas fraction cg, cg ∈ {0, 1}. The mass conservation for the gas phase
reads

∂t(cgρ) +∇ · (cgρu) = 0.

This conservation law can be rewritten as a transport equation for the gas mass fraction

∂tcg + u · ∇cg = 0.

To close the system, one needs an equation of state for each phase. We assume here an isentropic
evolution for each fluid, with a phasic pressure pk as a function of the phasic mass density, i.e.,
pk = pk(ρk). To get hyperbolicity, we will assume

∂pk
∂ρk

= c2k > 0

where ck denotes the speed of sound into the fluid k. Finally, we define the pressure p as

p = z pg(ρg) + (1− z) pℓ(ρℓ).

Pseudo-volume averaged equations. From the numerical point of view, a discretization of the trans-
port equation on z will automatically generate values on z in (0, 1), without any physical meaning
except maybe under a probabilistic one. It is then convenient to derive volume-averaged equations
on a given volume (see [Drew (1983); Ishii and Hibiki (2006)] for the rigorous derivation and closure
of these equations). The mass density now is seen as a mixture-like density according to a volume
fraction variable α ∈ [0, 1]:

ρ = αρg + (1− α)ρℓ. (1)

Averaging operations should also define a phasic velocity uk. But, assuming that gas and liquid
phases are sufficiently separated, we consider a unique velocity u. We are aware of the fact that it
is a quite unrealistic hypothesis, but this can be understood as a first analysis before going into the
case of multiple velocities. We expect the mass conservation of the mixture. Moreover, the mass
conservation of the gaseous phase writes

∂t(αρg) +∇ · (αρgu) = 0, (2)

or
∂t(ρcg) +∇ · (ρcgu) = 0, (3)

with
cg =

αρg
ρ

, (4)

so that the mass gas fraction is advected by the flow (cg as α belongs to [0, 1]). We still have a
momentum balance equation considering the mixture momentum on the volume. That implies the
definition of a pressure into this volume. As a simple closure model, we consider pressure equilibrium

p = pg(ρg) = pℓ(ρℓ).
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To conclude, there are different ways to represent the system, either using the volume fraction α:

∂t
(
αρg

)
+∇ · (αρgu) = 0, (5)

∂t
(
(1− α)ρℓ

)
+∇ ·

(
(1− α)ρℓu

)
= 0, (6)

∂t(ρu) +∇ · (ρu⊗ u) +∇p = ρg, (7)

or using the mass fraction cg:

∂tρ+∇ · (ρu) = 0, (8)

ρDtcg = 0, (9)

∂t(ρu) +∇ · (ρu⊗ u) +∇p = ρg, (10)

adding an isobaric closure (Dt is the Lagrangian derivative: Dt = ∂t + u · ∇).

Equations of state (EOS). Practically, we consider the following equations of state:

 An isentropic perfect gas law for the gas:

pg(ρg) = p0

(

ρg
ρ0g

)γg

. (11)

 An isentropic approximate Tait equation of state for the liquid [Batchelor (1967)]:

pℓ(ρℓ) = p0 + p0K

((

ρℓ
ρ0ℓ

)γℓ

− 1

)

, (12)

where K =
ρ0ℓc

2
ℓ

γlp0
is the bulk modulus. This equation assumes that the liquid is quasi-

incompressible since an high change of pressure entertains very slow variations on the den-
sity1,2.

In our targeted applications, we consider air-water flows. For simplicity, the air phase will be
modeled using a perfect gas law, with γg = 1.4. For the liquid water phase, we will use γℓ = 7.
We will work near under atmospheric conditions, and thus we will practically use the following
parameters: ρ0g = 1.28 kg.m−3, ρ0ℓ = 1000 kg.m−3, p0 = 105 Pa, cℓ = 1500 m.s−1. In order to
lower the stiffness between fluid velocities and sound speed (low Mach number conditions), we
can artificially lower the liquid speed of sound, for example c̃ℓ = 350 m.s−1 (keeping the weakly
compressible character of the water, cf [Monaghan (1994)]).

3. Numerical scheme

In this section we describe a staggered Lagrange+Remap scheme (also referred to as remapped
Lagrange scheme). The solver here is a variant version of the BBC scheme discussed in Woodward
and Collela [Woodward and Colella (1984)] also discussed in [Heuzé et al. (2009), De Vuyst et al.

1For instance, with a speed of sound cℓ = 350 m.s−1, ρ0ℓ = 1000 kg.m−3 and γℓ = 7: from a pressure of reference
p0 = 105 Pa, a division by 2 of this pressure yields to a variation of the density of the order of 0.004%.

2The treatment of the liquid as a compressible fluid avoids to invert a Poisson system and gives us a real pressure,
the drawback is the high celerity of sound of the water which restrains the time step of the numerical scheme.
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(2013)]. This Eulerian scheme uses a two-dimensional Cartesian staggered grid where the velocity
variables are defined at the edge midpoints while all the other quantities are defined at cell centers
(Fig. 1). In the following we write the constant spatial steps ∆x and ∆y such that the coordinates
of the center of the cell are xi = i∆x and yj = j∆y (for simplicity we write xi,j = (xi, yj)). Note
that the volume of the Eulerian cell is constant, given by Vi,j = ∆x∆y.

Cell i,j

x

y 1
/2
,

i
j

u
+

1
/2
,

i
j

u

, 1/2i j
v

, 1/2i j
v

+

Figure 1: Staggered mesh of the BBC scheme: the first component of the velocity u is defined at the vertical edge
midpoints and the second v at the horizontal edge midpoints. All the other physical quantities (like α and the pressure
p) are defined at the center of the cell.

3.1. Lagrangian step

This step allows us to solve the Euler equations written in Lagrangian form:

ρDt

(1

ρ

)
−∇ · u = 0, (13)

ρDtu+∇p = g, (14)

Dtcg = 0, (15)

where Dt = ∂t + u · ∇ is the Lagrangian (particle) derivative. In that scheme, the derivatives in
space are centered. To achieve numerical stability, a pseudo-viscosity pressure q is added. Artifical
viscosity only acts on compression areas (∇ · u < 0) allowing us to keep second-order accuracy
into expansion zones [Heuzé et al. (2009), Donea and Huerta (2003), Caramana et al. (1998)] (in
AppendixB the exact form of the pseudo-viscosity used is described).

To get second accuracy in time we use a multi-step scheme with the help of two intermediate
time steps tn+1/4 = tn + ∆t

4 and tn+1/2 = tn + ∆t
2 before the final time step tn+1 = tn + ∆t. To

summarize, the Lagrangian step consists of:

 A first step of prediction of an intermediate velocity at the time tn+1/4:

u
n+1/4,L
i+1/2,j = uni+1/2,j −

∆t

4

∆y

mn
i+1/2,j

[

(p+ q)ni+1,j − (p+ q)ni,j

]

, (16)

v
n+1/4,L
i,j+1/2 = vni,j+1/2 −

∆t

4

∆x

mn
i,j+1/2

[

(p+ q)ni,j+1 − (p+ q)ni,j

]

+
∆t

4
g,

(17)

where the total masses at the edges are defined by: mn
i+1/2,j =

mn
i,j+mn

i+1,j

2 and mn
i,j+1/2 =

mn
i,j+mn

i,j+1

2 (mn
i,j = mn

gi,j +mn
ℓi,j

).
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 A second step of prediction of the quantities at the time tn+1/2 using the new velocities at
tn+1/4:

V
n+1/2,L
i,j = V n

i,j +
∆t
2 ∆y

(

u
n+1/4,L
i+1/2,j − u

n+1/4,L
i−1/2,j

)

+ ∆t
2 ∆x

(

v
n+1/4,L
i,j+1/2 − v

n+1/4,L
i,j−1/2

)

;

(18)

from the knowledge of the partial mass of each fluid mn
gi,j , mn

ℓi,j
and the updated volume

V
n+1/2,L
i,j , the pressure equilibrium assumption requires the solution on an algebraic problem

set up in variable α:

p
n+1/2,L
i,j = pg

( mn
gi,j

α
n+1/2,L
i,j V

n+1/2,L
i,j

)

if mn
ℓi,j

= 0 ⇒ α
n+1/2,L
i,j = 1,

p
n+1/2,L
i,j = pℓ

( mn
ℓi,j

(1−α
n+1/2,L
i,j )V

n+1/2,L
i,j

)

if mn
gi,j = 0 ⇒ α

n+1/2,L
i,j = 0,

p
n+1/2,L
i,j = pg

( mn
gi,j

α
n+1/2,L
i,j V

n+1/2,L
i,j

)

= pℓ

( mn
ℓi,j

(1−α
n+1/2,L
i,j )V

n+1/2,L
i,j

)

otherwise.

(19)

This algebraic problem is numerically solved by a Picard fixed-point algorithm. In AppendixA
we give details on the numerical solution which is key for the overall performance of the
method.

To summarize, thanks to the pressure equilibrium assumption, we get the values of α
n+1/2,L
i,j ,

p
n+1/2,L
i,j , ρ

n+1/2,L
gi,j and ρ

n+1/2,L
ℓi,j

at the new time step (n + 1/2). This Lagrangian step keeps

both gas and liquid masses constant. Thanks to the new pressure p
n+1/2,L
i,j , the velocities at

time step tn+1/2 are then updated:

u
n+1/2,L
i+1/2,j = uni+1/2,j −

∆t
2

∆y
mn

i+1/2,j

[

(p+ q)
n+1/2,L
i+1,j − (p+ q)

n+1/2,L
i,j

]

, (20)

v
n+1/2,L
i,j+1/2 = vni,j+1/2 −

∆t
2

∆x
mn

i,j+1/2

[

(p+ q)
n+1/2,L
i,j+1 − (p+ q)

n+1/2,L
i,j

]

+ ∆t
2 g.

(21)

 A third step that enables us to get the variables on the distorted cells (of volumes V n+1,L
i,j

(22)), using the predicted quantities at tn+1/2:

V n+1,L
i,j = V n

i,j +∆t∆y
(

u
n+1/2,L
i+1/2,j − u

n+1/2,L
i−1/2,j

)

+∆t∆x
(

v
n+1/2,L
i,j+1/2 − v

n+1/2,L
i,j−1/2

)

. (22)

The new values of αn+1,L
i,j , pn+1,L

i,j , ρn+1,L
gi,j and ρn+1,L

ℓi,j
are then obtained thanks to the solution

of the pressure equilibrium assumption (Eq. (19)) in which we replace the volume V
n+1/2,L
i,j

and α
n+1/2,L
i,j by their updated values V n+1,L

i,j and αn+1,L
i,j , the masses remaining constant.

Finally, the velocities at time tn+1,L are given by the extrapolations procedure:

un+1,L
i+1/2,j = 2u

n+1/2,L
i+1/2,j − uni+1/2,j , (23)

vn+1,L
i,j+1/2 = 2v

n+1/2,L
i,j+1/2 − vni,j+1/2. (24)

Expressions (23)-(24) are condensed form of conservative momentum evolution.
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3.2. Projection step

At the end of the Lagrangian step, we get updated values on a moved mesh. The so-called remap
step is required to get the quantities on the initial cartesian grid. The conservative projection step is
performed at a given order accuracy (current work only deals with a first order accuracy), however
we take a particular attention to the projection related to the volume fractions in order not produce
too much artificially mixture by a numerical diffusion.

The remap step is performed in two sub-steps following an alternating direction fractional step
procedure:

1. Projection along the x direction. The vertical left and right edges are turned back on their
initial positions, giving a cell of volume:

V n+1,∗
i,j = V n+1,L

i,j −∆t∆y(u
n+1/2,L
i+1/2,j − u

n+1/2,L
i−1/2,j ), (25)

2. Projection along the y direction. We thus recover the initial cartesian grid:

V n+1
i,j = V n+1,∗

i,j −∆t∆x
(

v
n+1/2,L
i,j+1/2 − v

n+1/2,L
i,j−1/2

)

(26)

= ∆x∆y. (27)

In each subset, the projection of the partial masses and the velocities are performed without equilib-
rium in pressure requirement. Consistance and stability properties are asked to the remap numerical
scheme by imposing conditions on the fluxes at the edges appearing in the following formulas (28)-
(29) for the first step (resp. (31)-(32) for the second) in order not to create extremum. After the
remap, a step of equilibrium in pressure is performed varying the partial volume fraction of each
phase in order to get the volume fraction α at equilibrium.

The conservative projection of masses are given by:

 Projection step along x: (the quantities are obtained on the intermediate volume V n+1,∗
ij de-

fined by (25)):

mn+1,∗
gi,j = mn

gi,j −∆t∆y
[

u
n+1/2,L
i+1/2,j

(

αρg

)n+1,L

i+1/2,j
− u

n+1/2,L
i−1/2,j

(

αρg

)n+1,L

i−1/2,j

]

, (28)

mn+1,∗
ℓi,j

= mn
ℓi,j

−∆t∆y
[

u
n+1/2,L
i+1/2,j

(

(1− α)ρℓ

)n+1,L

i+1/2,j
− u

n+1/2,L
i−1/2,j

(

(1− α)ρℓ

)n+1,L

i−1/2,j

]

,

(29)

with the quantities
(

αρg

)n+1,L

i±1/2,j
for the gas (resp.

(

(1 − α)ρℓ

)n+1,L

i±1/2,j
for the liquid) corre-

sponding to an interpolation of the quantity αρg (resp. (1 − α)ρℓ) at the interface (left or
right) i ± 1/2, j of the cell i, j. As the volume and the partial masses of each phase have

changed during the projection step, the solution of the pressure equilibrium relation is needed
to get (among others) the value of αn+1,∗

i,j that we need for the next step:

pn+1,∗
i,j = pg

( mn+1,∗
gi,j

αn+1,∗
i,j V n+1,∗

i,j

)

if mn+1,∗
ℓi,j

= 0 ⇒ αn+1,∗
i,j = 1,

pn+1,∗
i,j = pℓ

( mn+1,∗
ℓi,j

(1− αn+1,∗
i,j )V n+1,∗

i,j

)

if mn+1,∗
gi,j = 0 ⇒ αn+1,∗

i,j = 0,

pn+1,∗
i,j = pg

( mn+1,∗
gi,j

αn+1,∗
i,j V n+1,∗

i,j

)

= pℓ

( mn+1,∗
ℓi,j

(1− αn+1,∗
i,j )V n+1,∗

i,j

)

otherwise,

(30)
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where mn+1,∗
gi,j , αn+1,∗

i,j , mn+1,∗
ℓ/gi,j

and V n+1,∗
i,j are the intermediate projected values. We still refer

to the AppendixA for details on the algebraic solution.

 Projection step along y: at the end of this step, the quantities are known on the volume

V n+1
ij = ∆x∆y, and thus on the cartesian grid:

mn+1
gi,j = mn+1,∗

gi,j −∆t∆x
[

v
n+1/2,L
i,j+1/2

(

αρg

)n+1,∗

i,j+1/2
− v

n+1/2,L
i,j−1/2

(

αρg

)n+1,∗

i,j−1/2

]

, (31)

mn+1
ℓi,j

= mn+1,∗
ℓi,j

−∆t∆x
[

v
n+1/2,L
i,j+1/2

(

(1− α)ρℓ

)n+1,∗

i,j+1/2
− v

n+1/2,L
i,j−1/2

(

(1− α)ρℓ

)n+1,∗

i,j−1/2

]

,

(32)

with the quantities
(

αρg

)n+1,∗

i,j±1/2
for the gas (resp.

(

(1 − α)ρℓ

)n+1,∗

i,j±1/2
for the liquid) which

approximate the quantities αρg (resp. (1−α)ρℓ) at the interface (top or bottom) i, j± 1/2 of
the cell i, j.

Once again, after the projection step, we need to solve the pressure equilibrium assumption:

pn+1
i,j = pg

( mn+1
gi,j

αn+1
i,j V n+1

i,j

)

if mn+1
ℓi,j

= 0 ⇒ αn+1
i,j = 1,

pn+1
i,j = pℓ

( mn+1
ℓi,j

(1− αn+1
i,j )V n+1

i,j

)

if mn+1
gi,j = 0 ⇒ αn+1

i,j = 0,

pn+1
i,j = pg

( mn+1
gi,j

αn+1
i,j V n+1

i,j

)

= pℓ

( mn+1
ℓi,j

(1− αn+1
i,j )V n+1

i,j

)

otherwise, (33)

and we get the final values at time tn+1 on the Eulerian cartesian grid: αn+1
i,j , pn+1

i,j , ρn+1
gi,j and

ρn+1
ℓi,j

.

In the formulas of projection of the masses (28)-(29) and (31)-(32), for first order accuracy, the most
obvious stable choice to define the interpolated values of α, ρg and ρl at the edges is an upwind
strategy:

(

αρg

)n+1,L/∗

i+1/2,j,up
= α

n+1,L/∗
i,j ρ

n+1,L/∗
gi,j si u

n+1/2,L
i+1/2,j > 0 (34)

= α
n+1,L/∗
i+1,j ρ

n+1,L/∗
gi+1,j si u

n+1/2,L
i+1/2,j ≤ 0 (35)

and
(

αρg

)n+1,L/∗

i,j+1/2,up
= α

n+1,L/∗
i,j ρ

n+1,L/∗
gi,j si v

n+1/2,L
i,j+1/2 > 0 (36)

= α
n+1,L/∗
i,j+1 ρ

n+1,L/∗
gi,j+1 si v

n+1/2,L
i,j+1/2 ≤ 0, (37)

and the same for the quantities related to the liquid phase. Such a choice is actually irrelevant to
simulate immiscible fluids since the projection on volume fraction is too much diffusive and does
not enable to follow a thin interface (cf. Fig. 2a). Let us emphasize that second order projection is
still not sufficient to keep a numerical thin interface (cf. Fig. 2b).

We did not detail the projection formulas for the momentum. This can be found in [De Vuyst
et al. (2013)].

In the next section, we explain how we improved this remap step in order to keep a numerical
thin interface between gas and liquid.
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(a) First order upwind projection (b) Second order upwind projection

Figure 2: Effect of upwind projection without any specific treatment of the volume fraction, due to numerical diffusion.
Example of collapse of a column of water with an obstacle in the middle of the box. We represent the numerical
volume fraction α at a certain time obtained with two different upwind projections. With the first order upwind
projection (Fig. 2a), the interface between the liquid (in blue) and the air (in red) is too much diffusive to be followed
with accuracy (e.g. droplets and air pockets are hidden because of the diffusion). With the second order upwind
projection (Fig. 2b), the interface is less diffuse and we begin to see an air pocket which were previously concealed
by the diffusion. But the diffusion is still present and we do not observe formation of droplets.

4. A low-diffusive procedure to choose the fluxes at the edges of the remap numerical

scheme

As initially discussed into the introduction, our strategy here is to design a computational ap-
proach which is quite simple to implement but can also be implemented in parallel in a rather
straightforward way. Our construction follows ideas initially proposed by [Lagoutière (2000); De-
sprés and Lagoutière (2002)] to build low-diffusive advection schemes.

The principle is to take advantage of both upwind scheme (known to be strongly stable but
artificially diffusive) and downwind scheme (low-diffusive but unstable) in order to obtain a stable
scheme with minimal numerical diffusion. This family of anti-diffusive schemes has been extended
to the case of multiphase flows [Billaud Friess et al. (2011); Kokh and Lagoutière (2010)]. We
here adapt the methodology to the present “three-equation” two-phase system. First, we recall the
conservation form of the mass conservation (Eq. 3) in terms of cg

∂t(ρcg) +∇ · (ρcgu) = 0. (38)

It is equivalent to the mass conservation of the gas phase (2):

∂t(αρg) +∇ · (αρgu) = 0.

We immediately deduce the nonconservative transport equation for the mass gas fraction (thanks
to equations (1) and (38):

Dtcg = ∂tcg + u · ∇cg = 0. (39)

This free linear transport equation implies a local maximum principle on the variable cg. It is easy
to check that α and cg (4) are linked according to the dual relations:

α(ρg, ρℓ, cg) =
cgρℓ

cgρℓ + (1− cg)ρg
, cg(ρg, ρℓ, α) =

αρg
αρg + (1− α)ρℓ

. (40)
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From the numerical point of view, the maximum principle checked by cg into (39) should also be
verified. The idea is to get the “best” interface value of cg in order to ensure the local maximum
principle while being as most compressive as possible. But, because of the dependency of cg on α,
ρg and ρℓ (second formula in (39)), we need to express the maximum principle of cg in terms of
interface values of α, ρg and ρℓ:

cgi+1/2,j
=

αn+1,L
i+1/2,j(ρg)

n+1,L
i+1/2,j

αn+1,L
i+1/2,j(ρg)

n+1,L
i+1/2,j + (1− αn+1,L

i+1/2,j)(ρℓ)
n+1,L
i+1/2,j

. (41)

Following once again ideas from [Kokh and Lagoutière (2010)], we decide to simply set the upwind
values for ρg and ρℓ. The remaining degree of freedom is the value of αn+1,L

i+1/2,j which has to be

optimized, subject to consistency and stability requirements (on cg). For simplicity, we only describe
the first step of the x-projection, considering variables at stage (n+1, L) in order to get intermediate
projected variables at (n+1, ∗). From now on, the sought value of α is denoted αLD

i±1/2,j (LD stands

for low diffusive). The process is:

1. first, to define a trust interval I as the intersection of intervals in which αLD
i+1/2,j must be

in order to check consistency and stability properties for the projection. The intersection is
ensured not to be empty since the diffusive value αn+1,L

i+1/2,j,up is known to belong to all of these
intervals;

2. then to take for αLD
i+1/2,j the nearest value from the downwind one αn+1,L

i+1/2,j,down (most com-

pressive choice) while remaining in the trust interval3.

The definition of the trust interval I, in which we will choose the value αLD
i+1/2,j at the edges

(i+ 1/2, j), is subject to some consistency and stability requirements.

Consistency requirement. The value at the edge cgi+1/2,j
must be between the values at the left

and right cells of the edges, which means

cn+1,L
gi+1/2,j

∈ [tn+1,L
i+1/2,j , T

n+1,L
i+1/2,j ], (42)

where
tn+1,L
i+1/2,j = min(cn+1,L

gi,j , cn+1,L
gi+1,j

), Tn+1,L
i+1/2,j = max(cn+1,L

gi,j , cn+1,L
gi+1,j

), (43)

with at the edges, cgi+1/2,j
expressed thanks to its definition (41). In order to define a first condition

for the trust interval, we have to find a sufficient condition αLD
i+1/2 ∈ [dn+1,L

i+1/2,j , D
n+1,L
i+1/2,j ] to check the

condition (42)4. We refer to Kokh and Lagoutière (2010) for details, we get the same value for
[dn+1,L

i+1/2,j , D
n+1,L
i+1/2,j ] using the definition of cg (41) and of ρ (1):

αn+1,L
i+1/2,j ∈ [dn+1,L

i+1/2,j , D
n+1,L
i+1/2,j ] := I1 ⇒ cn+1,L

gi+1/2,j
∈ [tn+1,L

i+1/2,j , T
n+1,L
i+1/2,j ], (44)

3We recall that for a generic variable z, the upwind and downwind values correspond to:

zn+1,L
i+1/2,j,up = zn+1,L

i,j if u
n+1/2,L

i+1/2,j > 0

= zn+1,L
i+1,j if u

n+1/2,L

i+1/2,j ≤ 0,

and

zn+1,L
i+1/2,j,down = zn+1,L

i+1,j if u
n+1/2,L

i+1/2,j > 0

= zn+1,L
i,j if u

n+1/2,L

i+1/2,j ≤ 0.

4Note that tn+1,L
i+1/2,j and Tn+1,L

i+1/2,j belong to the interval [0, 1].
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with the lower bound dn+1,L
i+1/2,j :

dn+1,L
i+1/2,j =

ρn+1,L
ℓi+1/2,j,up

tn+1,L
i+1/2,j

ρn+1,L
gi+1/2,j,up

(1− tn+1,L
i+1/2,j) + ρn+1,L

ℓi+1/2,j,up
tn+1,L
i+1/2,j

(45)

and the upper bound Dn+1,L
i+1/2,j :

Dn+1,L
i+1/2,j =

ρn+1,L
ℓi+1/2,j,up

Tn+1,L
i+1/2,j

ρn+1,L
gi+1/2,j,up

(1− Tn+1,L
i+1/2,j) + ρn+1,L

ℓi+1/2,j,up
Tn+1,L
i+1/2,j

. (46)

Note that the interval [dn+1,L
i+1/2,j , D

n+1,L
i+1/2,j ] ⊂ [0, 1] is well defined since ρg > 0 and ρl > 0 in all the

cells if the pressure p > 0 thanks to the definition of the EOSs (11)(12) and thus the denominator is
strictly positive (recording that tn+1,L

i+1/2 and Tn+1,L
i+1/2 all belong to [0, 1], see footnote 4). Thus we have

defined a first interval I1 (44) to define the final trust interval I. It can be easily proved that the
upwind value αn+1,L

i+1/2,j,up belongs to I1. Note that this interval I1 does not differ from the original

referred article (since only the definition of the mass fraction cg (41) is used).

Stability requirement. We now define the second interval I2 used for the definition of the

final trust interval. This interval depends on the sign of the velocity at the edges u
n+1/2,L
i+1/2,j which

determines in which cell the stability condition is calculated. We detail the obtention of the interval
in the positive case (that we note I+2 ), the other case can be found in AppendixC and is noted I−2 .

The projected value cn+1,∗
gi,j must respect the following stability condition (at Leroux-Harten

meaning): if the velocity at the edge i+1/2 is positive (u
n+1/2,L
i+1/2,j > 0) and if u

n+1/2,L
i−1/2,j > 0, to ensure

the stability of cg in cell i, j 5, cn+1,∗
gi,j must check:

tn+1,L
i−1/2,j ≤ cn+1,∗

gi,j ≤ Tn+1,L
i−1/2,j , (47)

with tn+1,L
i−1/2,j and Tn+1,L

i−1/2,j defined by (43). This new condition (47) allows us to have the positivity

of the partial masses during the projection step since tn+1,L
i−1/2,j ∈ [0, 1] and Tn+1,L

i−1/2,j ∈ [0, 1]. The

projection of the masses per phase can be equivalently rewritten in terms of ρcg and ρ thanks to
the definition of cg (4): (28)-(29) are equivalent to:

(cgρ)
n+1,∗
ij =

V n+1,L
ij

V n+1,∗
ij

(cgρ)
n+1,L
ij − ∆t∆y

V n+1,∗
ij

[

u
n+1/2,L
i+1/2,j (cg)

n+1,L
i+1/2,jρ

n+1,L
i+1/2,j − u

n+1/2,L
i−1/2,j (cg)

n+1,L
i−1/2,jρ

n+1,L
i−1/2,j

]

, (48)

(ρ)n+1,∗
ij =

V n+1,L
ij

V n+1,∗
ij

(ρ)n+1,L
ij − ∆t∆y

V n+1,∗
ij

[

u
n+1/2,L
i+1/2,j ρn+1,L

i+1/2,j − u
n+1/2,L
i−1/2,j ρn+1,L

i−1/2,j

]

, (49)

with the intermediate V n+1,∗
i,j defined by (25):

V n+1,∗
i,j = ∆x∆y +∆t∆x

(

v
n+1/2,L
i,j+1/2 − v

n+1/2,L
i,j−1/2

)

. (50)

We now characterize the interval I2 (I+2 in the case of positive velocities) by the following successive
results:

5When u
n+1/2,L

i+1/2,j < 0, and if u
n+1/2,L

i+3/2,j < 0, the stability condition must be calculated in the cell i + 1 since the
information comes from the right cell.
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Proposition 1. If u
n+1/2,L
i+1/2,j > 0 and if u

n+1/2,L
i−1/2,j > 0, the stability condition is calculated on the cell

(i, j) and if we take αn+1,L
i+1/2,j ∈ [bi+1/2,j , Bi+1/2,j ] := I+2 , with

bn+1,L
i+1/2,j = αn+1,L

i,j +

ρn+1,L
i,j

ρn+1,L
gi+1/2,j,up

(1− Tn+1,L
i−1/2,j) + Tn+1,L

i−1/2,jρ
n+1,L
ℓi+1/2,j,up

︸ ︷︷ ︸

>0

(
Tn+1,L
i−1/2,j − cn+1,L

gi,j

)[u
n+1/2,L
i−1/2,j

u
n+1/2,L
i+1/2,j

−
V n+1,∗
i,j

∆t∆y u
n+1/2,L
i+1/2,j

]

︸ ︷︷ ︸

≤0 under the condition (53)

,

(51)

and

Bn+1,L
i+1/2,j = αn+1,L

i,j +

ρn+1,L
i,j

ρn+1,L
gi+1/2,j,up

(1− tn+1,L
i−1/2,j) + tn+1,L

i−1/2,jρ
n+1,L
ℓi+1/2,j,up

︸ ︷︷ ︸

>0

(
tn+1,L
i−1/2,j − cn+1,L

gi,j

)[u
n+1/2,L
i−1/2,j

u
n+1/2,L
i+1/2,j

−
V n+1,∗
i,j

∆t∆y u
n+1/2,L
i+1/2,j

]

︸ ︷︷ ︸

≥0 under the condition (53)

,

(52)

we ensure cn+1,∗
gi,j to stay in the interval defined by (47) and thus we guarantee the stability of the

remap scheme. Moreover, under the CFL-like cell strain limitation condition

V n+1,∗
i,j −∆t∆y u

n+1/2,L
i−1/2,j ≥ 0 (53)

the upwind value αn+1,L
i,j belongs to both I+2 and I1.

Proof. We first consider the inequality:

tn+1,L
i−1/2,j ≤ cn+1,∗

gi,j (54)

by multiplying it by ρn+1,∗
i,j and by using (48)-(49), we get the condition:

cn+1,L
gi+1/2,j

ρn+1,L
i+1/2,j ≤

V n+1,L
i,j

∆t∆y

ρn+1,L
i,j

u
n+1/2,L
i+1/2,j

(
cn+1,L
gi,j − tn+1,L

i−1/2,j

)
+ tn+1,L

i−1/2,jρ
n+1,L
i+1/2,j . (55)

This condition is a sufficient one: indeed the definition of tn+1,L
i−1/2 (43) involves that the quantity

ρn+1,L
i−1/2,j

u
n+1/2,L
i−1/2,j

u
n+1/2,L
i+1/2,j

(cn+1,L
gi−1/2,j

− tn+1,L
i−1/2,j) ≥ 0, which should appear in the right side of (55), can be erased

to give a sufficient condition (55) independent of the edge i − 1/2 to check the stability condition
(54). Thus, replacing cgρ by αρg and using the definition of ρ (1) we rewrite the sufficient condition
(55) to check (54) in terms of conditions on the value of α at the edges:

αn+1,L
i+1/2,j

(

ρn+1,L
gi+1/2,j,up

(1− tn+1,L
i−1/2,j) + tn+1,L

i−1/2,jρ
n+1,L
ℓi+1/2,j,up

)

︸ ︷︷ ︸

:=Q2

≤

V n+1,L
i,j

∆t∆y

ρn+1,L
i,j

u
n+1/2,L
i+1/2,j

(
cn+1,L
gi,j − tn+1,L

i−1/2,j

)
+ ρn+1,L

ℓi+1/2,j,up
tn+1,L
i−1/2,j

︸ ︷︷ ︸

:=Q1

. (56)
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We thus prove that the upwind value αn+1,L
i+1/2,j,up = αn+1,L

i,j (since u
n+1/2,L
i+1/2,j > 0 in that case) is

lower than the quantity Q1/Q2, by displaying αn+1,L
i+1/2,j,up in the term Q1, in order to construct an

nonempty trust interval by intersection of the two intervals I1 and I2. This should be done by
rewriting term Q1 as follows:

Lemma 4.1. The term Q1 defined in (56) can be rewritten equivalently as:

Q1 = αn+1,L
i,j

(

ρn+1,L
gi+1/2,j,up

(1− tn+1,L
i−1/2,j) + tn+1,L

i−1/2,jρ
n+1,L
ℓi+1/2,j,up

)

+ρn+1,L
i,j

(
cn+1,L
gi,j − tn+1,L

i−1/2,j
︸ ︷︷ ︸

≥0

)[V n+1,∗
i,j −∆t∆y u

n+1/2,L
i−1/2,j

∆t∆y u
n+1/2,L
i+1/2,j

]

. (57)

Proof. First, we can rewrite the term Q1 of (56) as:

Q1 = ρn+1,L
i,j

(

cn+1,L
gi,j − tn+1,L

i−1/2,j

)

+ tn+1,L
i−1/2,jρ

n+1,L
ℓi,j

+ρn+1,L
i,j

(
cn+1,L
gi,j − tn+1,L

i−1/2,j

)[ V n+1,L
i,j

∆t∆y u
n+1/2,L
i+1/2,j

− 1
]

. (58)

Thanks to the definition of cg (4) and ρ (1), and since the upwind values on the edges i + 1/2

correspond to the values of the variables in the cell i, j (u
n+1/2,L
i+1/2,j > 0), the following relation is

checked:

ρn+1,L
i,j

(

cn+1,L
gi,j − tn+1,L

i−1/2,j

)

+ tn+1,L
i−1/2,jρ

n+1,L
ℓi,j

= αn+1,L
i,j

(

ρn+1,L
gi+1/2,j,up

(1− tn+1,L
i−1/2,j) + tn+1,L

i−1/2,jρ
n+1,L
ℓi+1/2,j,up

)

. (59)

Then, using (59) in (58) and the definition of the intermediate volume V n+1,∗
i,j (25), we can rewrite Q1

in the form (57) of Lemma 4.1.

Let’s go back to the proof of Proposition 1. Besides, as ρn+1,L
g/ℓi+1/2,j,up

> 0 if p > 0, then Q2 =

ρn+1,L
gi+1/2,j,up

(1− tn+1,L
i−1/2,j) + tn+1,L

i−1/2,jρ
n+1,L
ℓi+1/2,j,up

> 0 and a sufficient condition to respect the condition of

stability (54) is to consider

αn+1,L
i+1/2,j ≤ Bn+1,L

i+1/2,j , (60)

withBn+1,L
i+1/2,j defined by (52). Finally, if the CFL condition (53) is respected, we see immediately that

αn+1,L,upw
i+1/2,j ≤ Bn+1,L

i+1/2,j . The treatment of the other inequality is similar (we still have ρn+1,L
gi+1/2,j,up

(1−

Tn+1,L
i−1/2,j) + Tn+1,L

i−1/2,jρ
n+1,L
ℓi+1/2,j,up

> 0 since ρn+1,L
g/ℓi+1/2,j,up

> 0 if the pressure p > 0) and we get the

definition (51) for the lower boundary bn+1,L
i+1/2,j of the interval I+2 . Thus, if the condition (53) is

checked, then

αn+1,L
i+1/2,j,up = αn+1,L

i,j ∈ [bn+1,L
i+1/2,j , B

n+1,L
i+1/2,j ] := I+2 (61)

and a new interval I+2 is defined and is added to the trust interval for the choice of the low diffusive
value αLD

i+1/2,j .

Finally, we summarize the results obtained in that section, that is the construction of a nonempty
trust interval depending on the sign of the edges velocities to find a low-diffusive value for the flux
αLD
i+1/2,j used in the formula of projections (28)-(29).
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Theorem 4.2. Under the condition to be respected by the time step (in which s = sign(u
n+1/2,L
i+1/2,j ))

V n+1,∗
i+1/2,j,upw − s∆t∆y ui+1/2−s,j ≥ 0, (62)

when un+1,L
i+1/2,ju

n+1,L
i+s/2,j > 0 (i.e. when the velocities at the edges of the cell where the stability condition

is calculated are of the same sign), the value of αLD
i+1/2,j can be taken in the following trust interval I:

I = I1
︸︷︷︸

consistency for cg

∩ Is2
︸︷︷︸

stability for cg

:= [ωn+1,L
i+1/2,j ,Ω

n+1,L
i+1/2,j ] ∈ [0, 1], (63)

which is nonempty since the upwind value αn+1,L
i+1/2,j,up ∈ I, where the interval I1 are defined by (44)

and Is2 by (C.1)-(C.2). Moreover, taking αLD
i+1/2,j ∈ I ensures to respect maximum principle on cg

and especially to keep the positivity of the masses of each phases during the projection6.

Remark. Note that the trust interval is only defined in two cases: if u
n+1/2,L
i+1/2,j > 0 and u

n+1/2,L
i−1/2,j > 0

or if u
n+1/2,L
i+1/2,j < 0 and u

n+1/2,L
i+3/2,j < 0. In the other cases, the procedure described above takes the

upwind choice without the need of a trust interval.

Remark. Contrary to Kokh and Lagoutière (2010), in our case the value of α after each step of
projection naturally respects a maximum principle (α stays in [0, 1] during the solution of the
pressure equilibrium algebraic problem, cf. AppendixA.2) without having to add extra conditions.
Besides, the volume fraction α (obtained in terms of a balance of partial volumes) depends on the
other quantities of the system ρ, cg and u, whereas the color function of Kokh and Lagoutière (2010)
(which is advected) only depends on the velocities.

Remark. For the second step of projection, the procedure to define the trust interval is exactly
the same by replacing the quantities at time n + 1, L used in the previous formulas or the low-

diffusive value by their updated values at time n+1, ∗; by substituting the quantity ∆yu
n+1/2,L
i±1/2,j by

∆xv
n+1/2,L
i,j±1/2 and the intermediate volume V n+1,∗

i,j by V n+1
i,j = ∆x∆y.

For the choice of the low-diffusive value at the edges αLD
i+1/2,j thanks to the knowledge of the

trust interval I, we refer to Kokh and Lagoutière (2010) using the trust interval defined above (or
see the remainder in the AppendixD).

4.1. Time step restriction and CFL condition

The implemented low-diffusive procedure does not restrict the time step although it needs to
respect the condition (C.3). Indeed, this will be checked if we impose that the vertical edges of the
cells cannot move of more than ∆x

4 and the horizontal edges of the cells of more than ∆y
4 . This is

in particular valid if we impose the following restriction on the time step:

∆t max(|u|, |v|) ≤
min(∆x,∆y)

4
. (64)

Note that this condition also ensures that all the intermediate volumes constructed during either
the Lagrangian phase V n+1,L

i,j (22) or during the projection phase V n+1,∗
i,j (25) are positives. We

remind the classical CFL condition for the Euler equation:

∆t max(|u, |v|, |c|) <
min(∆x,∆y)

2
, (65)

6Note that the arbitrary choice to calculate maximum principle conditions on the quantities related to the gas
induces the same properties for the liquid due to the relations cg + cℓ = 1, and thus min(cgi,j , cgi−1,j ) = 1 −

max(cℓi,j , cℓi−1,j ) and max(cgi,j , cgi−1,j ) = 1−min(cℓi,j , cℓi−1,j ).
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where c is the speed of sound of the flow that we choose constant (taken at the celerity of sound of
the water c0ℓ in all our simulations). In our case, due to the quasi-incompressible nature of the fluid,

the Mach number has to be always less than 0.1 (in time and space): M = |u|
c < 0.1 (cf. Monaghan

(1994) for instance). In particular the numerical speed of sound must check:

c > 2 max(|u|, |v|), (66)

and thus the classical CFL condition (65) completed with the condition (66) deduced from the low
Mach hypothesis is efficient to ensure the condition (64). Thus the condition (C.3) (or (53) in the
case of positive edge velocities) which is necessary to define a nonempty trust interval for the low-
diffusive choice of αLD

i+1/2,j is checked: the low diffusive procedure does not conduct to a reduction
of the time step.

5. Numerical experiments

The resulting two-dimensional numerical code (ODYSSEY) has been tested on various dam
break test cases, selected since they allow us for comparisons with other numerical codes and, when
available, with real water experiments realized in tank. Only wall slip boundary conditions are
currently implemented in the ODYSSEY code. Extension to more complex boundary conditions
will soon be realized.

Test case I. We use the parameters from Cruchaga et al. (2007) enabling a comparison with both real
experiments and numerical results (obtained with a Finite Element method coupled with an interface
capturing method for the Navier-Stokes incompressible equations). We consider a numerical box
(0.44 m × 0.42 m) filled up with gas except for a column of water at the left bottom corner of
width 0.144 m and twice higher. We assume that the gate which retains the water instantaneously
disappears at the initial time. The parameters for the EOS are: γg = 1.4, γℓ = 7, c0 = 350 m.s−1,
p0 = 105 Pa, ρ0g = 1 kg.m−3, ρ0ℓ = 1000 kg.m−3; the number of cells in each direction is Nx =
Ny = 300. The results are presented in Fig. 3 and Fig. 4 for different time steps. Note that the
experiments are realized on three-dimensional tanks which can lead to transverse effects that cannot
be rendered by a two-dimensional numerical code.

Test case II. In this simulation, we add an obstacle in the middle of the box. It will be at the origin
of the formation of a long wave which will impact the right wall. Using sizes from Greaves (2006)
(Fig. 5) we can compare at different time steps with both experiments [Koshizuka et al. (1995)]
and numerical simulations [Greaves (2006)]. The EOS parameters are identical to the previous test
case. The number of points of discretization are Nx = 600 and Ny = 600. Comparative results of
the volume fraction at different times are shown at Fig. 6 and Fig. 77. Then, in Fig. 8, we compare
results obtained with our 2D code with the first order projection with (case B) and without (case
A) the low-diffusive procedure. We plot the volume fraction of gas at three different times. The
first order low-diffusive projection allows us to keep a thin interface between water and air. We get
a detailed interface and physical phenomenons including pockets of gas, ejection of droplets, etc.

Besides, due to the high density ratio (1/1000) between both liquid and gas phases, gas mass
fraction cg is a better indicator of numerical diffusion. Indeed, if the volume fraction of gas α is
α = 1 − 10−8, the mass fraction cg is cg ∼ 1 − 10−5 (taken ρg ∼ 1 and ρl ∼ 1000). In Fig. 9, we
represent this quantity at different time steps in the whole box of simulation (without the cutoff

7The tank used by Koshizuka et al. (1995) is opened at a height of 0.6 m whereas the numerical simulations are
performed on a box of height of 4a = 1 m.

16



Exp. Cruchaga et al. Simu. Cruchaga et al.

t=0.1s

t=0.2s

t=0.3s

t=0.4s

t=0.5s

Exp. Cruchaga et al. Simu. Cruchaga et al.

t=0.6s

t=0.7s

t=0.8s

t=0.9s

t=1.0s

Figure 3: Collapse of a column of water. The experimental (resp. numerical) results of Cruchaga et al. (2007) are
at left (resp. in the middle) and the results with our code ODYSSEY at right are compared at different time step.
Except at the initial time where we see that the rise of the gate has a little impact on the experiment (not taken
into account by the codes), the collapse of the column with our code gives results in very good agreements with those
of Cruchaga et al.. Up to the time t = 0.6 s, the numerical results are indeed very similar. In the next snapshots,
discrepancies are mainly due to the droplets which fall from the upper wall (in particular at the left bottom of the
box), which is not the cas in the simulation of Cruchaga et al. since they have taken open boundary conditions for
the upper wall.

at h = 0.6 m). Droplets (which are initially ejected from the wave edge) generate a small volume
fraction of water in mixed cells. Since our code considers an unique mean velocity u, we then keep
all created mixed cells within the numerical simulation. We are aware that it is a shortcoming of
the method, but anyway the fluid interface is kept sharp and we are able to track the free boundary
with quite sufficient accuracy. In Fig. 10 we superimpose both gas volume fraction and velocity
field. Finally in Fig. 11 the pressure field is plotted.

Test case III. We here consider the sloshing of a liquid under an horizontal excitation, i.e. the tank
translates horizontally (surge acceleration). The tank position moves according to the periodic
motion x(t) = A cos(2πt/T ) where A = 0.032 m is the maximum amplitude of the excitation and T
the period (cf. Fig. 12). In Akyildiz and Ünal (2006), it is analyzed that the quantity of energy
transmitted to the fluid by the motion of the tank depends on the closeness of the tank frequency
(forced frequency) to the first natural frequency of the fluid inside the tank. More the
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Exp. Cruchaga et al. Simu. Cruchaga et al.

t=1.1s

t=1.2s

t=1.3s

t=1.4s

t=1.5s

Figure 4: Same as Fig. 3 at longer time. At these times (especially the three last shots), our code reproduces better
the experiment than the numerical code of Cruchaga et al.. The evolution in time of the water is well reproduced by
our code, the agitation we still observe is due to the fact that our model does not take into account viscosity.

forced frequency is close to the natural frequency of the liquid, more the amplitude of the sloshing
is expected to be large. The first natural frequency of the liquid contained in a tank could be
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4a

2a

2a d

2da

End of the 

experimental

open tank

0
.6

 m

Figure 5: Collapse of a water column with an obstacle. The initial gate which retains the column of water disappears
at the initial time and the column of water collapses. The parameters are a = 0.25 m and d = 0.04 m.

t=0s

t=0.129s

t=0.258s

Figure 6: Collapse of a water column with an obstacle. At left, the results obtained with the code of Greaves, in the
middle, the results of Koshizuka et al. and at right the results with our code ODYSSEY. Small deviations at the
beginning between numerical and physical experiments originate from the finite time necessary for the removal of the
gate. Otherwise, it is essentially in good agreement with referred results.

obtained thanks to the formula (cf. e.g. Akyildiz and Ünal (2006)):

ωfluid =

√

g
π

L
tanh(

π

L
hw), (67)

where L is the length of the tank, hw the initial height of the water in the tank. In the following,
we take a forced period of T = 1.3 s (i.e. ωforced = 4.83 rad/s) and a height of water of 0.6 m. The
relation (67) gives a natural frequency for the fluid of ωfluid = 3.77 rad/s. For this test case, both
experimental results performed by Faltinsen et al. Faltinsen et al. (2000) and numerical one are
available Shao et al. (2012).

In Fig. 13 we present the gas volume fraction at different times: a wave generated by the
horizontal motion of the tank moves on both sides of the tank with a varying amplitude.
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t=0.387s

t=0.516s

t=0.645s

Figure 7: Collapse of a water column with an obstacle at longer time. The results are in agreement with the
experiments and the other simulation. In particular, in the next snapshots (t = 0.645 s), our code developed the same
patterns near the obstacle and a gas pocket on the top right corner, similarly to the experiment.

In the next figure 14, we follow the time evolution of the free surface elevation of the water at a
distance of 0.05 m of the left of the box and we superpose to our results the scanned experimental
results of Faltinsen et al. (2000). We obtained both the correct period for the oscillation and the
correct wrapping of the signal. The slight overestimation of the amplitude of the height of the water
can be explained by the fact that we have neglected the viscosity in our model. Without viscosity,
the amplitude of the wave is not slowed down and the results are quite overestimated compared to
the one obtained in Fig. 5 a) of Shao et al. (2012) with their SPH code with viscosity. Anyway,
we recover the expected nonlinear characteristics: the upwind sloshing amplitude is larger than the
downwind sloshing amplitude. By performing a fit of the curve given by our code (in plain blue line
in the Fig. 14), we recover the curve as a superposition of the forced and natural frequencies (Fig.
15).

Test case IV. Here, we study the free fall of a disk of water (surrounded by air) and its impact with
some water at rest (Fig. 16). We show the evolution of the volume gas fraction at different time
steps (cf. Figs. 17 and 18). What can be observed is that the computational quality and accuracy
are almost as good as pure Lagrangian methods (SPH, particle-based), at least for the characteristic
time of strong dynamics.

Test case V. As a complementary test case, we show the long-time development of air-water
Rayleigh-Taylor instabilities generated by gravity. At initial time, the liquid is put over the gas
with a sine-shaped boundary between the two fluids (the boundary is given by Γ(x) = Ly/2 +
Ly/20 cos(2πx/Lx), cf. Fig. 19). Because the surface tension is not taken into account, instabilities
at all wavelengths should emerge and grow. From the numerical point of view, only wavelengths
greater than the mesh size can be captured by the code. We are aware that this computation is
mesh-dependent but its goal is to show that we are able to capture free-boundary air-water flows
with strong topological changes with a small amount of numerical diffusion.
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A B

t=0.258 s

t=0.516 s

t=0.645 s

Figure 8: Accuracy of interface capturing. A first order projection (case A) is compared to the (also first order but)
low-diffusive procedure (case B). It is observed that numerical diffusion is mainly suppressed and complex interface
details can be tracked.

6. Discussion and conclusions

In this paper we have presented a numerical solver for immiscible fluid two-phase flow problems
with numerical solution and experiments for air-water flows. The hydrocode solver is based on a
remapped Lagrange discretization which appears to have several advantages in this context. After a
pure conservative finite volume reinterpretation, the strategy for free boundary capturing is to design
anti-diffusive phasic mass fluxes. We adapt the antidiffusive approach by Després-Lagoutière and
Lagoutière-Kokh to our system of equations. We derive accuracy-stability trust regions to select the
best interface gas fractions (“best” means most compressive but stable). Roughly speaking, what can
be observed is that the computational quality and accuracy are almost as good as pure Lagrangian
methods (SPH, particle-based) as soon as details of the moving interface are not of the order of
the mesh step. In case of fine structures like filamentation, sprays, high-frequency instabilities, the
numerical method inherently creates artificial phase mixing and numerical diffusion of the interface.
A way to improve accuracy would be to use adaptive mesh refinement AMR strategies in regions
of strong gas fraction gradients, but this has not be done yet. This works is a milestone toward a
more physical air-water simulation code including fluid viscosity and free boundary surface tension
and more “multiphase effects”. The use of two phasic velocities for example would allow for fluid
sliding at interfaces, but also for phase reseparation (by buoyancy). Viscosity and surface tension
should be helpful and good for interface capturing accuracy because they have interface regularizing
effects. Another milestone is the GPU code parallelization. The antidiffusive interface capturing
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t=0.129 s t=0.258 s

t=0.387 s t=0.516 s t=0.645 s
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 experimental 

tank

Figure 9: Collapse of a water column with an obstacle. Snapshots of the concentration of gas cg. We represent the
whole numerical box (without the cut at h = 0.6 m). After the formation of a wrapped motion, we observe some
numerical diffusion due to the ejection of droplets initiated from the edge of the wave. Outside of this zone, the
diffusion of the interface of the free surface flow is restricted to one cell. At the final time (t = 0.645 s), these small
amount of liquid begin to slightly disturb the free surface on the bottom right due to the fall of droplets due to gravity.
But this diffusion appears only in terms of mass and not in term of volume of water which remains negligible.

scheme has been held up because we are confident on its natural and straightforward parallelization
without particular specific interface treatment.
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t=0.129 s t=0.258 s t=0.387 s

t=0.516 st=0.645 s

Figure 10: Dam Break test case with an obstacle with the ODYSSEY code. We superimpose both gas volume fraction
and velocity field. Thanks to the representation of this vector field, we better understand the motion of the free
surface flow.

t=0.129 s t=0.258 s

t=0.387 s t=0.516 s

t=0.645 s

Figure 11: Dam Break test case with an obstacle with the ODYSSEY code. We show the pressure field. In particular,
at t = 0.258 s and t = 0.387 s, we see a pressure peak due to the obstacle at the middle of the box.
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Figure 12: Tank partially filled up with water submitted to an horizontal excitation. Here, the dimension of the box
is: L = 1.73 m, H = 1.15 m, and the tank is filled up with a height hw of water. Nx = 173 and Ny = 115. We
measure the evolution in time of the height of the water at d = 0.05 m of the left border of the tank.

Figure 13: Tank partially filled up with water submitted to an horizontal excitation, with hw = 0.6 m and a period for
the tank of T = 1.3 s. We represent the volume fraction of the gas (always gas in red and water in blue) at different
times: t1 = 0.52 s, t2 = 0.92 s, t3 = 1.32 s, t4 = 1.72 s, t5 = 2.52 s for the first line and t6 = 2.92 s, t7 = 3.92 s,
t8 = 4.92 s, t9 = 6.52 s, t10 = 7.12 s for the second line. Due to the horizontal excitation of the tank, a wave initiates
and displaces from left to right and right to left with an amplitude which increase up to t ≃ 3.5 s before decreasing
and having a situation more stable at t = 6.54 s. After, the amplitude of the oscillation increases again (cf. Fig. 14).
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Figure 14: Tank partially filled up with water submitted to an horizontal excitation, with hw = 0.6 m and a period
for the tank of T = 1.3 s. We represent the free surface elevation, i.e. the height of the water relatively to the initial
height hw. We superimpose to our results (plain blue line) the scanned experimental curve of Faltinsen et al. (2000)
(dotted black line). Our code reproduces with good accuracy the frequency of the oscillations of the height of the
water and the envelop of these oscillations is well conserved. We notice small defects on the amplitude of the relative
height of the water compared to the experiment.
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-0.10

1086420

Coe cient values ± one standard deviation
A   =-0.080534 ± 0.0014
f1  =3.7424 ± 0.00578
f2  =4.8324 ± 0.00717
phi1 =1.5511 ± 0.0348
phi2 =1.5875 ± 0.0426
o$ =0.011949 ± 0.000963
B   =0.066601 ± 0.00139

Figure 15: Fit of the curve representing the evolution in time of the free surface elevation of the water given by our
code with a function f(t): f(t) = A sin(ω1t + φ1) + B sin(ω2t + φ2) (curve given by our code in dotted red line and
fitted curve in plain blue line). We obtain for the two frequencies: ω1 = 3.74 rad/s and ω2 = 4.83 rad/s. The first
one is very closed to the natural frequency of the fluid (ωfluid = 3.77 rad/s) and the second to the induced frequency
of the box (ωforced = 2π

T
= 4.83 rad/s).

Lx

Ly

d=H
2H

2.5H

H=Ly/4

Figure 16: Free fall of water and impact with water at rest. The box size is: Lx = Ly = 0.584 m (Nx = Ny = 350).
The height of the water layer is H = Ly/4 = 0.146 m and the radius of the water disk is H/2 = 0.073 m, put at the
middle of the box and at 2.5H from the bottom of the box.

t=0.094 s t=0.177 s t=0.184 s t=0.194 s

t=0.203 s t=0.229 s t=0.258 s t=0.290 s

Figure 17: Free fall of a disk of water and impact with water at rest. Evolution of the volume fraction of gas α at
different time steps. The smashing of the sphere conducts to the formation of two jets on either side of the initial
disk.
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t=0.349 s t=0.450 s t=0.545 s t=0.564 s

t=0.618 s t=0.694 s t=0.859 s t=1.055 s

Figure 18: Free fall of a disk of water and impact with water at rest. Evolution of the volume fraction of gas α at
longer time step. The gap generated by the fall of the disk is progressively filled up due to the falling of the jet of
water at right and left of the box due to the gravity. This motion conducts at the end of the presented snapshots to
the formation of a new bouncing jet at the middle of the box due to the meeting of the two lateral ones. The expected
symmetry is well-conserved during quite a long time.

Lx

Ly
a=Ly/20

Figure 19: Configuration: Lx = 0.5 m, Ly = 1. m, Nx = 300, Ny = 600. The border between air and liquid is
disturbed at a height of Ly/2 by a sine-shaped signal: Ly/2 + Ly/20 cos(2πx/Lx).
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t=0 s t=0.07 s t=0.09 s

t=0.14 s t=0.22 s t=0.30 s

Figure 20: Rayleigh-Taylor instabilities. Heavy (water) fluid above the light one (gas) with a sine-shaped perturbation
of the initial interface.

t=0.33 s t=0.34 s t=0.37 s

t=0.41 s t=0.45 s t=0.53 s

Figure 21: Rayleigh-Taylor instabilities. Development of a main needle followed by secondary fine needles and topology
changes. The overall symmetry of the computational is globally fulfilled.
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AppendixA. Numerical solution of the pressure equilibrium equation

AppendixA.1. Solution of pressure equilibrium equations and equations of states

From the conservative variables Wg = αρg and Wℓ = (1 − α)ρℓ, we have to compute both
pressure p and gas volume fraction α. The pressure equilibrium assumption (barotropic closure)
leads to a scalar algebraic equation to solve p = pg(ρg) = pℓ(ρℓ), i.e.

pg

(
Wg

α

)

= pℓ

(
Wℓ

1− α

)

(A.1)

for α ∈ (0, 1). As an example, let us consider an isentropic perfect gas law for the gas

pg(ρg) = p0

(
ρg
ρ0g

)γg

(A.2)

and the modified Tait equation for the liquid

pℓ(ρℓ) = p0 + p0K

[(
ρℓ
ρ0ℓ

)γℓ

− 1

]

, (A.3)

where K =
ρ0ℓc

2
ℓ

p0γℓ
, cℓ being the speed of sound in the liquid. The modified Tait equation is a rather

good, local approximation of the compressibility of the water near references conditions (ρ0ℓ , p0). It
is assumed that flow conditions will not exceed the validity domain of this EOS, i.e. pℓ(ρℓ) > 0 or
equivalently

ρℓ
ρ0ℓ

> (1−K−1)
1
γℓ . (A.4)

Under “atmospheric” conditions, one can use the following numerical parameters: p0 = 105 Pa,
ρ0g = 1.28 kg m−3, ρ0ℓ = 1000 kg m−3, cℓ = 1500m s−1, γg = 1.4, and γℓ = 7. For these values,
K = 3214.3 and the validity domain of the Tait equation (A.4) is

ρℓ
ρ0ℓ

> 0.999955

(showing the low compressibility of the water). With these EOS, the pressure equilibrium equa-
tion (A.1) writes

(
ρg
ρ0g

)γg

= 1 +K

[(
ρℓ
ρ0ℓ

)γℓ

− 1

]

. (A.5)

Introducing the dimensionless variables µg =
Wg

ρ0g
and µℓ = Wℓ

ρ0ℓ
, we get the algebraic equation to

solve
(µg

α

)γg
= 1 +K

[(
µℓ

1− α

)γℓ

− 1

]

, α ∈ (0, 1).

AppendixA.2. Uniqueness of the root

For a mixed cell, i.e. µg, µl > 0 fixed, we search to set to zero the following function Φ:

Φ(α, µg, µℓ) =
(µg

α

)γg
− 1−K

(
( µℓ

1− α

)γℓ
− 1

)

. (A.6)

By derivating, we get:

∂Φ(α, µg, µℓ)

∂α
= −

γgµ
γg
g

αγg+1
−

Kγℓµ
γℓ
ℓ

(1− α)γℓ+1
< 0 for α ∈]0, 1[ and µg ≥ 0, µℓ ≥ 0. (A.7)
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As φ(α, µg, µℓ) −→
α→0+

+∞ and φ(α, µg, µℓ) −→
α→1−

−∞, we can find an unique α∗ ∈ [0, 1] such

that pg(ρg) = pℓ(ρℓ) > 0. Moreover this solution ensures to get positive pressures in the mixed
cells. Practically we use volume fraction thresholds by defining two critical values αg

c = 10−8 and
αℓ
c = 10−11: when α∗ < αg

c , then α∗ is forced to 0 and when 1− α∗ < αℓ
c, then α∗ is forced to 1 to

avoid to deal with too small numbers (α∗ such that φ(α∗, µg, µℓ) = 0). Note that these cuts conduct

to neglect mass fraction of gas less than cg =
αρg
ρ < ccutoffg ≈ 10−11 and mass fraction of the liquid

less than cℓ =
(1−α)ρℓ

ρ < ccutoffℓ ≈ 10−8 (for ρg ≈ 1 and ρℓ ≈ 1000). Notice that the cutoff is chosen
not symmetrically due to the high density ratio between the two phases (ρℓ/ρg ∼ 1000).

AppendixA.3. Efficient Picard fixed point method strategy

We can rewrite (A.6) in a more appropriate form

f(α) = (1− α)
[
αγg +K−1

(
µ
γg
g − αγg

)] 1
γℓ − µℓ α

γg/γℓ = 0, α ∈ [0, 1]. (A.8)

Remark that f(0) = (K−1µ
γg
g )1/γℓ ≥ 0 (> 0 if µg > 0) and f(1) = −µℓ ≤ 0 (< 0 if µℓ > 0). In

order to solve f(α) = 0 numerically, we need a convergent fixed point algorithm. Usually, a Newton
method is used because of its quadratic convergence rate. Unfortunately, we experienced a poor
convergence rate on the equation (A.8). The reason is that α 7→ f(α) has a derivative at the root
which is (numerically) close to zero and thus the convergence rate is quasi-linear. On figure A.22,
we show a typical profile of the function α 7→ f(α). One can observe a “flat” region near the root,
making the Newton method slowly convergent. Our strategy is to correctly initialize the Newton
method with some “good” initial guess by means of a predictor step.

Figure A.22: Profile of the function α 7→ f(α), log10 scale, for p = p0 and α⋆ = arg
α∈[0,1]

(f(α) = 0) = 10−3.

AppendixA.4. Initial guess strategy for the Newton algorithm

Because of the stiffness of the pressure equilibrium equation, a convenient initial guess for
Newton’s algorithm is needed to ensure both fast convergence and for the iterates to stay into
the admissible interval [0, 1]. Below, we describe two different ways (depending on the step of the
numerical scheme considered, i.e. Lagrange or remap) in order to find a systematic initial guess for
Newton’s algorithm.

AppendixA.4.1. Lagrangian step

During the Lagrangian step, we look for an equation checked by the volume gas fraction α which
includes the pressure equilibrium assumption. This has been already discussed in papers dealing
with relaxation strategies (cf. Colella et al. (1996); Robinson (2008) for instance). In the following,
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we will denote αg the volume fraction of gas and αℓ the one of the liquid, with αg + αℓ = 1. From
the EOSs of the two phases (11)-(12), we obtain:

Dtρg =
ρg
γg

1
pg
Dtpg =

ρg
γg

1
P Dtp, (A.9)

Dtρℓ =
ρℓ
γℓ

1
pℓ+p0(K−1)Dtpℓ =

ρℓ
γℓ

1
p+p0(K−1)Dtp, (A.10)

where p is the pressure of the mixture of gas and liquid at the equilibrium: p = pg(ρg) = pℓ(ρℓ).
Moreover, from the equations of conservation of masses of each phase (5)-(6), we have:

Dtαk + αk
∂u

∂x
+

αk

ρk
Dtρk = 0, k = g, ℓ. (A.11)

Using (A.9)-(A.10) in (A.11), we get:

Dtαg + αg∇ · u+
αg

γgP
Dtp = 0, (A.12)

Dtαℓ + αℓ∇ · u+ αℓ
γℓ

1
p+p0(K−1)Dtp = 0. (A.13)

Since αg +αℓ = 1, we find the non-conservative equation check by the pressure p in the mixed cells:

Dtp+ p
γgγℓ

(
1 + p0/p(K − 1)

)

αgγℓ
(
(K − 1)p0/p+ 1

)
+ αℓγg

∇ · u = 0, (A.14)

depending on the coefficients of each EOS and on the volume gas fraction α. And thus using (A.12),
we obtain the equation followed by the volume gas fraction α including the pressure equibirum
assumption:

Dtαg + αg

(

1−
γℓ
(
1 + (K − 1)p0p

)

αgγℓ
(
1 + p0

p (K − 1)
)
+ (1− αg)γg

)

∇ · u = 0. (A.15)

Thanks to (A.15), we get (using that the total volume checked DtV = V ∇ · u thanks to Eq. 13):

Dt(αgV ) =
(

1−
(1− αg)γg

αgγℓ
(
1 + p0

p (K − 1)
)
+ (1− αg)γg

︸ ︷︷ ︸

:=fg(αg ,p)

)

DtV, (A.16)

and we finally take for the initial value in the Newton algorithm during the Lagrangian phase:

αguess,L
i,j = min

(

max
(

0, αn
i,j

V n
i,j

V n+1,L
i,j

+
(
1− fg(α

n
i,j , p

n
i,j)

)V
n+1,L
i,j − V n

i,j

V n+1,L
i,j

)

, 1
)

. (A.17)

AppendixA.4.2. Remap step

During the remap step, to initiate the Newton algorithm, we use an interpolation of α on the
intermediate volume V n+1,∗

i,j for the first step of projection:

I(α)n+1,∗
i,j =

V n+1,L
i,j

V n+1,∗
i,j

αn+1,L
i,j −

∆t∆y

V n+1,∗
i,j

(

u
n+1/2,L
i+1/2,j αn+1,L

i+1/2,j − u
n+1/2,L
i−1/2,j αn+1,L

i−1/2,j

)

. (A.18)

In particular, in the previous formula (A.18), αn+1,L
i±1/2,j = I(α)|Vi±1/2,j

represents the interpolation of α

on the volume Vi±1/2,j defined by the displacement of the edge (i±1/2, j) during the time step ∆t at

the velocity u
n+1/2,L
i±1/2,j . In Eq. ( A.18), αn+1,L

i±1/2,j is given by the low-diffusive value αLD
i±1/2,j calcultated
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in Sec. 4. Then, starting from this initial point, the Newton algorithm modifies the partial volume
of each phase up to reach the equilibrium in pressure. We ensure the guess to be in the interval [0, 1]
by defining αguess,remap = min(max(0, I(α)n+1,∗

i,j )). For the second step of projection, the formula

to initiate the Newton algorithm is similar: the interpolation of α on the Eulerian volume V n+1
i,j is

given by:

I(α)n+1
i,j =

V n+1,∗
i,j

V n+1
i,j

αn+1,∗
i,j −

∆t

∆x

(

v
n+1/2,L
i,j+1/2 αn+1,∗

i,j+1/2 − v
n+1/2,L
i,j−1/2 αn+1,∗

i,j−1/2

)

. (A.19)

In the formula (A.19), the interface values αn+1,∗
i,j±1/2 = I(α)|Vi,j±1/2

represent the interpolations of the

quantity αn+1,∗
i,j on the volumes Vi,j±1/2 defined by the displacement of the vertical edges i, j ± 1/2

at the velocities v
n+1/2,L
i,j±1/2 during the time step ∆t. It corresponds to the low-diffusive value αLD

i±1/2,j

calculated during the second step of remap to get the projected masses thanks to Eqs. (31)-(32).

AppendixB. Comments on the artificial viscosity

During the Lagrange phase (cf. Sec. 3.1), we use an artificial viscosity q (the so-called pseudo-
viscosity) in order to stabilize the staggered scheme which is centered in space. The pseudo-
viscosity q is a viscous pressure. It is designed to only act into compression zones (div(u) < 0)
and shock waves. On the contrary, for smooth expansion zones the pseudo-viscosity is set to zero
to keep second order accuracy. This conducts to change the momentum balance by means of the
pressure gradient but also the mean density by means of the divergence of the velocity. The pseudo-
viscosity is a combination of a linear term (qlin ≈ div(u)) which acts on the linear stability and
a quadratic one qquad ≈ |div(u)|div(u) provides nonlinear (large-amplitude shock) stability. We
refer to [Von Neumann and Richtmyer (1950); Wilkins (1980); Caramana et al. (1998); Heuzé et al.
(2009); Robinson (2008); Sprague (1955)] for more details on this subject.

As we deal with the two-dimensional problems, we have to take into account a 2D approach of
the velocity divergence and in order to check the previous requirements, we choose the following
form of the pseudo-viscosity in the code: the linear term is expressed as

qlin = − a1ρcs√
∆y∆x

(∆u∆y +∆v∆x), if div(u) < 0 (B.1)

= 0 elsewhere,

where δu represents the jump in velocity along the x direction: ∆ui,j = uni+1/2,j−uni−1/2,j , and ∆v is

the jump along the y direction: ∆vi,j = vni,j+1/2−vni,j−1/2, naturally defined in the center of a cell (i, j)

thanks to the staggered grid (as the real pressure term p). The pseudo-viscosity coefficient a1 > 0,
a1 = O(1) is a constant to be defined and depends on hydrodynamics quantities. For the quadratic
term, it has to be on the form of qquad ≈ −a2

ρ
V DtV |DtV | (cf. Sprague (1955)) and as the total

volume V = m
ρ follows the equation DtV = V∇ · u in the Lagrangian phase cf. Eq. (13), we choose

the following form:

qquad = − a2ρ
∆x∆y

(

|∆u∆y +∆v∆x|(∆u∆y +∆v∆x)
)

if div(u) < 0 (B.2)

= 0 elsewhere,

which is homogeneous to a pressure term (a2 = O(1)). The two constants a1 and a2 are taken in
all the simulations to 0.15 and 0.1 respectively.
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AppendixC. Definition of the interval I2 to ensure stability conditions for cg

In the section 4, we have treated the case when the velocities u
n+1/2,L
i±1/2,j > are positive and the

stability condition for the remap scheme on cg is calculated on the cell i, j. Without detailing the

other case when u
n+1/2,L
i+1/2,j < 0, (and if the velocity of the other vertical edge is negative u

n+1/2,L
i+3/2,j < 0),

by defining s = sign(u
n+1/2,L
i+1/2,j ) we can write the interval Is2 = [bn+1,L

i+1/2,j , B
n+1,L
i+1/2,j ] in a generic form .

The lower bound is expressed as:

bn+1,L
i+1/2,j

= αn+1,L
i+1/2,j,up

+

ρ
n+1,L
i+1/2,j,up

ρ
n+1,L
gi+1/2,j,upw

(1−T
n+1,L
i+1/2−s,j

)+T
n+1,L
i+1/2−s,j

ρ
n+1,L
ℓi+1/2,j,upw

(

Tn+1,L
i+1/2−s,j

− cn+1,L
gi+1/2,j,up

)

[u
n+1/2,L
i+1/2−s,j

u
n+1/2,L
i+1/2,j

−
V

n+1,∗
i+1/2,j,upw

∆t∆y u
n+1/2,L
i+1/2,j

]

,

(C.1)

and the upper bound as:

Bn+1,L
i+1/2,j

= αn+1,L
i+1/2,j,up

+

ρ
n+1,L
i+1/2,j,up

ρ
n+1,L
gi+1/2,j,up

(1−t
n+1,L
i+1/2−s,j

)+t
n+1,L
i+1/2−s,j

ρ
n+1,L
ℓi+1/2,j,up

(

tn+1,L
i+1/2−s,j

− cn+1,L
gi+1/2,j,up

)

[u
n+1/2,L
i+1/2−s,j

u
n+1/2,L
i+1/2,j

− s
V

n+1,∗
i+1/2,j,up

∆t∆y u
n+1/2,L
i+1/2,j

]

,

(C.2)

Thus, under the generic restriction condition on the time step:

V n+1,∗
i+1/2,j,upw − s∆t∆y ui+1/2−s,j ≥ 0, (C.3)

we can proved that αn+1,L
i+1/2,j,up ∈ [bn+1,L

i+1/2,j , B
n+1,L
i+1/2,j ] := Is2

8 if u
n+1/2,L
i+1/2,j > 0 and u

n+1/2,L
i−1/2,j > 0 or if

u
n+1/2,L
i+1/2,j < 0 and u

n+1/2,L
i+3/2,j < 0.

AppendixD. Reminder of the choice of the low-diffusive value at the edges αLD
i+1/2,j

In the section 4, we have define the trust interval in which αLD
i+1/2,j has to be taken. We just

recall here the procedure of low-diffusion that can be found in Kokh and Lagoutière (2010) using
our trust interval I (63) to choose αLD

i+1/2,j as close as possible from the downwind value in order to
limit the diffusion:

 If u
n+1/2,L
i+1/2,j > 0, the objective is to take as much as possible the downwind value for α at the

edges, i.e. αn+1,L
i+1,j staying stable and keeping the positivity of masses of each cell:

1.

if u
n+1/2,L
i−1/2,j > 0,







if αn+1,L
i+1,j ≤ (ω)n+1,L

i+1/2,j , αLD
i+1/2,j = ωn+1,L

i+1/2,j

if ωn+1,L
i+1/2,j < αn+1,L

i+1,j < Ωn+1,L
i+1/2,j , αLD

i+1/2,j = αn+1,L
i+1

if αn+1,L
i+1 ≥ Ωn+1,L

i+1/2,j , αLD
i+1/2,j = Ωn+1,L

i+1/2,j

(D.1)

2. if u
n+1/2,L
i−1/2,j ≤ 0, we take the upwind value αLD

i+1/2,j = αn+1,L
i,j .

 if u
n+1/2,L
i+1/2,j < 0, the objective is to take as much as possible the downwind value for α at the

edges i.e. αn+1,L
i,j :

8We recall that for a generic variable z, zi+1/2,j,up corresponds to the value zi,j if u
n+1/2,L

i+1/2,j > 0 and otherwise to
the value zi+1,j .
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1.

if u
n+1/2,L
i+3/2,j < 0,







if αn+1,L
i,j ≤ ωn+1,L

i+1/2,j , αLD
i+1/2,j = ωn+1,L

i+1/2,j

if ωn+1,L
i+1/2,j < αn+1,L

i,j < Ωn+1,L
i+1/2,j , αLD

i+1/2,j = αn+1,L
i,j

if αn+1,L
i,j ≥ Ωn+1,L

i+1/2,j , αLD
i+1/2,j = Ωn+1,L

i+1/2,j

(D.2)

2. if u
n+1/2,L
i+3/2,j ≥ 0, we take the upwind value: αLD

i+1/2,j = αn+1,L
i+1,j .
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