Existence theory for the kinetic-fluid coupling when small droplets are treated
as part of the fluid
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Abstract

We consider in this paper a spray constituted of an incompressible viscous gas and of small droplets
which can breakup. This spray is modeled by the coupling (through a drag force term) of the incom-
pressible Navier-Stokes equation and of the Vlasov-Boltzmann equation, together with a fragmentation
kernel. We first show at the formal level that if the droplets are very small after the breakup, then the
solutions of this system converge towards the solution of a simplified system in which the small droplets
produced by the breakup are treated as part of the fluid. Then, existence of global weak solutions for
this last system is shown to hold, thanks to the use of the DiPerna-Lions theory for singular transport
equations.

1 Introduction

Sprays are complex flows which are constituted of an underlying gas in which a population of droplets (or
dust specks) are dispersed, cf. [18]. There are various possibilities for modeling such flows, depending in
particular on the volume fraction of the liquid phase (cf. [9] for example).

We focus here on the case when the volume fraction occupied by the droplets is small enough to be
neglected in the equations (such sprays are called thin sprays, cf. [18]), so that the modeling of the liquid
phase can be performed by the use of a pdf (particles density function) which solves Vlasov-Boltzmann
equation (cf. [21, 1]). Denoting f := f(¢,x,&,7) > 0 the number density of droplets of radius r which at
time ¢ and point x have velocity &, the Vlasov equation writes

8tf+£'vxf+v£'(fr):Q(f)v (1)

where I represents the acceleration felt by the droplets (resulting from the drag force exerted by the gas),
and @ is an operator taking into account the complex phenomena happening at the level of the droplets
(collisions, coalescences, breakup).

We also restrict ourselves to the case when the gas is incompressible and viscous, which is for instance
the usual framework when studying the transport of sprays in the upper airways of the human lungs, cf.
[17]. Accordingly, the gas is modeled by the incompressible Navier-Stokes equation

Vi -u=0, (2)
g [0+ Vy - (u®@u)] + Vyp — pAu = Fro, (3)

where p, is the constant density of the gas, u := u(t,x) € R? is its velocity, u is its constant (dynamic)
viscosity, and F.¢; is the retroaction of the drag force:

+oo 4 3
Fret(t,x) = —/0 /RS 3 pir’ f T dédr. (4)

Finally, p; is the constant density of the liquid (so that the mass of the droplets of radius r is % o).
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For particles with small Reynolds numbers, the drag force is given by the simple formula (known as
“Stokes’ law”)

F(tax’gar):_ggéﬂ:g(t)qv (5)

that we shall systematically use in the sequel.

The modeling of the breakup phenomena is important in the applications and has led to various models
appearing in the literature (cf. [1]). A typical form of the breakup kernel is obtained when assuming that
the droplets after breakup have the same velocities as before breakup. The operator writes then

Q(f)(t&ﬁﬂ“)=—V(€J‘)f(t,xa€ﬂ’)+/ b(r*, r)v(& ™) f(t,%, &, 77) dr”, (6)

r*>r

where v := v(€,7) > 0 is the fragmentation rate, and b := b(r*,r) > 0 is related to the probability of ending
up with droplets of radius r out of the breakup of droplets of radius r*. We finally obtain the following
system

Vi -u=0, (7)
Of+& Vxf+ Ve [fT]=Q(f), (8)
Py |00+ Vyx - (u@u)| + Vip — pAxu = Fre. 9)

Because of the dependence w.r.t. r of I' in eq. (5), we see that the drag force acting on the small droplets
leads to very quick equilibration of their velocity with the velocity of the gas. It is therefore natural to try to
write a set of equations replacing (4) — (9), in which the small droplets are considered as part of the gaseous
phase.

Indeed, in the context of the numerical simulation of eq. (1) thanks to a particle method, the small
droplets which are produced because of the breakup can lead to a high computational cost. Once integrated
(at the level of the continuous equations) in the gaseous phase, they can be discretized along with the gas
thanks to a finite volume scheme, and their contribution to the computational cost remains in this way
reasonable.

In order to perform a mathematical study of the system obtained by such an approximation, we consider
the simplest possible case, namely when the fragmentation rate v takes the form v(&,r) := 77 '1,~,,, for
some constants ro > 0 and 7 > 0, the latter being seen as a characteristic time of fragmentation. We also
assume that the aerosol is bidispersed: only two possible radii r; > r5 exist for the droplets, and the result
of the breakup of particles of radius r; are particles of radius ro. This implies that the density f splits in
the following way

f(t7Xa£7T) = fl(tvxvg) 6r:7"1 + fQ(taX7 5) 67’:7‘2?

and that system (4) — (9) rewrites, after having normalized all the constants (except 72):

vx'u:07 (10)

Ofi +&-Vxfi+ Ve [fi(u=§)]=—fi, (11)
fo(a—=8)| _ N

Ofa+&-Vxfo+ Ve -z = (12)
2 2

O+ Vo (0w + Vp— A= [ (=€) fide—r [ (06 fade. (13)

As we already explained, we are interested in the asymptotic regime when the particles resulting from
breakup are becoming smaller and smaller. In our bidispersed model, this reduces to study the limit ro — 0.



Denoting p = 73 / f2d€, and noticing that
R3

;t{/w [ n5 € jeax 1 r //f |£|2d€d /'112|2dx}
+/1r3/R$f1|£—u|2dsdx

1
+ = / / 3 fo |€ —ul? d&dx—l—/ |Vyu|?dx =0,
T3 Jr3 JR3 T3

we see that (at the formal level) 73 fo(t,%, &) — p(t, @) d¢g—u(t,x) When ro — 0.
Integrating eq. (12) against r3 d€, we end up with

O+ V- ol = [ frde (14)
R
Then, integrating eq. (12) against 73 & d¢ and adding the result with eq. (13), we obtain

01+ 9w + Vs (1 +puew) + Ve — A== [ - frae+ [ nede

Combining this last equation with eq. (14) and replacing the notation f; by f, we write down the system that
we wish to study (we close it with periodic boundary conditions for the mathematical proof of existence):

Vyu =0, (15)
O+ V- lpu = [ Fae (16)
Of + & Vuf +Ve-[(u=8) f] =1, (17)
(14 p) [0+ V- (@@ w)] + Vip — Axu =2 /RS(E—u)de, (18)

where p := p(t,x) > 0, u:=u(t,x) € R® p:=p(t,x) >0, f := f(t,x,€) >0,and t > 0, x € T3, £ € R3.
Let us recall that p represents here the “added density” resulting from the very small particles. This is the
reason why, though we normalized the fluid density in (13) by p, = 1, we have in (18) the term (1 + p) in
front of the convective part of the fluid equation. For a more detailed version of the previous computation,
see [5].

Our goal is to study the existence theory for this system, completed with the following initial data:

f0,x,8) = fin(x,€) 20, xe€T? ¢EeR’, (19)
p(0,%) = pin(x) >0, x€T? (20)
u(0,x) = uj,(x) € T, xe T (21)

Before stating our result, let us introduce a few notations. If there is no ambiguity on the considered time
interval, we simply denote by L} (L%) and LY(L{ ) the spaces LP([0,T];L9(T?)) and LP ([0, T]; LY(T? x R3)),
for any pair of exponents (p, q) € [1,00]2. In particular when p = ¢ we simply use the notation L”. We adopt
the same convention for Sobolev spaces WL? and H? (m € N) and denote by H,™ (or equivalently H™"(T?))
the dual of the latter. When the subscript “ div” is added to any space, the corresponding subspace are
the divergence-free (in x only) elements of the ambient space. We denote by P the Leray projector onto
divergence-free vector fields

P =1d — V, Ay 'divy,



easily defined on 2([0,T] x T?) thanks to Fourier analysis, extended by duality to 2’([0,T] x T?).

Finally, if h is a scalar function defined on Ry x T3 x R3, we define the following moments for h := h(t, x, £)
(and for a € R)

mah(t:x) = [ I htx €€, Mb() = [ ma()(ex)dx mib(to = [ entex€)de

T3

Thanks to those notations, we are able to write down our main Theorem:

Theorem 1.1. Let T > 0 and assume that
fin €L, (L+ |€]*) fin € L', pin € L, 1y € LY, (22)
Then the system (15) — (21) admits a global weak solution (p >0, f >0, u € R?) such that
p e L=([0,T],L>3(T%)), f € L=(]0,T] x T* x R®),u € L2([0, T], H},, (T?)) N L>=([0, 7], L*(T?)).  (23)

Moreover, the triplet (p, f, u) satisfies the following energy estimate

1 t 3 [t
2 {0 (0) + /T 000 ult) 2o ey +/ IV 0(8)][2 o s + f/ / £ fdédxds
2 0 2 0 T3 xR3
1
< 5 {Mafin + I+ pim inllEars } (24)

and the bound
[ fllLee (o, )12 xre) < €27 || finllnoe (12 x).-

Remark 1.1. We explain here the meaning of “ weak solutions 7 in the above Theorem. For p € [1,0],

when u € LP, f € L™ and p € L, equations (15)—-(16) have a clear meaning in the distributional sense.
However the meaning of (18) is not completely obvious, and we rewrite this equation, using both (18) and

(17), as
P {at[u + p)ul + div [(1 Foue u} } — Axu=P{2m,f — umof}. (25)

For the initial condition, we adopt the following general definition : consider vy, € 2'(T3) and w in
L. ([0, T); H™™(T?)) for some integer m € N. A distribution v € 9’ (] = 00, T[xT?) is a solution of the
Cauchy problem

0w = w, v(0) = vip,

if the support of v is included in Ry and if
v =W+ 8o @ vy in F'(] — 00, T[xT?),

where w is the extension of w by 0 on R_.

The study of the existence of solutions to coupled (through drag force interaction) fluid-kinetic equations
is now a well-established subject.

As far as viscous equations are concerned for the modeling of the gaseous phase, we would like to quote
the works on the Vlasov-Stokes equations in [12], on the Vlasov/incompressible Navier-Stokes equations
in [2, 6, 20], on the Vlasov-Fokker-Planck/incompressible Euler equations in [8] , on the Vlasov-Fokker-
Planck/incompressible Navier-Stokes equations in [15], and on the Vlasov-Fokker-Planck/compressible Navier-
Stokes equations in [16].

Without any viscosity or Fokker-Planck damping, the study is more difficult, and only smooth local
solutions are known to exist, in the compressible setting (cf. [4] and [14]).



Our system (15) — (18) is reminiscent of the Vlasov/incompressible Navier-Stokes equations with a vari-
able density. It is known that variable densities in the incompressible Navier-Stokes equations lead to extra
difficulties (w.r.t. constant densities), cf. [7, 13]. Here extra difficulties (w.r.t. [6]) appear in the final
passage to the limit (that is, in the stability result for solutions satisfying the natural a priori estimates of
the problem). They are linked with nonlinearities which are specific of our model, and which necessitate a
careful treatment using refined versions of Lemmas presented in [10].

The equations coming out of the theory of sprays are known to be difficult to approximate in a good way
(that is, in a way in which the a priori estimates satisfied by the equations themselves, such as the energy
estimate, are also satisfied or well approximated by the approximating equations). This difficulty appears
in this paper, and the approximating scheme which is used is rather complicated and necessitates successive
steps, which are reminiscent of those used in [6].

Our paper is structured as follows: Section 2 is devoted to the Proof of existence of solutions to an
approximated version of this system. The approximation is removed in Section 3 and Theorem 1.1 is proven
there. Finally, we present in a short Appendix some autonomous results which are used in the Proof of
Theorem 1.1.

2 Existence for a regularized system

In this section, we begin the Proof of Theorem 1.1 by introducing a regularized system.

2.1 Definition of the regularized system

In order to do so, we introduce a mollifier ¢, € €°°(T?) for all ¢ > 0. We also introduce a truncation in
this way: we define 7. a nonnegative element of Z(R?), whose support lies in B(0,2/¢), bounded by 1, and
equal to 1 on the ball B(0,1/e).

Our regularized system writes

diveu, = 0, (26)
3tps+(us*§05) - Vx pe :mO(fs'VE)a ( )
8tfe+€'VXfa+V£'[(ua*@s_f)fs] = —fe, (28)

(29)

]P{(l + Pe) [atue + (us * 805) : vxus} } - Axu, = 2P{m1(f6'7€) - usmO(fs'YE)}v

with initial conditions fg, € 2(T? x R3), p5, € €°°(T?) and uf, € €52 (T?) approximating respectively fi,
in all LY (T? x R?) (p < oo) and in L'(T? x R3, (1 + |€]?) dxd€), pin in all L(T%) (p < o0), and uj, in
L2(T3).

Next subsection is devoted to the Proof of existence of solutions to this approximated system (that is,
for a given parameter € > 0).

2.2 Existence of solutions for the regularized system

In this Subsection, the parameter ¢ is fixed, and we drop out the corresponding indices in order to make the
formulas more readable.

We fix a triplet of initial data (w,h,v) € €52 x (€1 NL>) x € (the two last ones being nonnegative).



The considered system (in which we do not explicitly write the initial data) is then the following:

diveu =0, (30)
Op+ (ux @) - Vi p=mo(f7), (31)
O0f+& Vxf+ Ve [(uxp—&)fl=—, (32)
]P’{(l +p)[Oru + (ux ) - vxu]} —Au= Q}P’{ml(fﬂy) - umo(f*y)}. (33)

We are able to prove the
Proposition 2.1. For any triplet of initial data (w,h,v) € €5 x (€1 NL®) x €1 (the two last ones being
nonnegative), there exists a weak solution (in the sense of Remark 1.1) to the system (30) — (33).

Proof of Proposition 2.1:
We shall show existence of a solution to the nonlinear system (30) — (33) by applying Schauder’s fixed
point Theorem to the following mapping:

S cgto (Lilv) — (gtO(chliv)
ur— u°,
where u® will be built thanks to the following steps :

(i) We first consider f¢ € ¢!, unique classical solution of

O+ & Vuf*+ Ve - [(uxp =& [T =—-f, (34)
with h as initial datum,

(ii) then p® € ¢ is defined as the unique classical solution of

9p® + (ux p) - Vxp® = mo(fv), (35)
with v as initial datum,

(iii) and finally u® € €(L3,,) is built as the unique divergence-free weak solution of

p{u +p7)[0r® + (wr ) - Ve } = At = 2P{my (f°9) - wmo(f°7)}, (36)

with w as initial datum.

In the sequel Pr(w, h, v) will denote any nonnegative function (which also may depend on e, but as explained
before we omit the corresponding index here) that splits into a finite sum of positively homogeneous functions
of strictly positive degree of one of the following terms : [|w|m1,||h]lcc OF ||V]lco- Pr(w,h,v) may change
from one line to another, but will always have the structure that we just described.

In the next paragraph, we show that f°, u® and p® are well defined.

2.2.1 Existence and uniqueness of f¢, p° and u®

We know that uxp € €2(%6,) and Vi(ux ) € L, so that the characteristic curves of (34) and (35) are
globally well-defined. We hence easily obtain the existence and uniqueness of two nonnegative functions f°
and p°® (classically) solving (34) and (35). Thanks to the maximum principle, we also know that

1£%llse < € [Plloc



from which we get
Imo(fN)llee + Imi(£7) |0 < Cre[|hllos < Pr(w, h,v), (37)

and hence
0%l < Pr(w,h,v). (38)

We now consider f© and p° as given. The existence and uniqueness of u® € H; , C % (L3), divergence-
free weak solution of (36) (with w for initial data) may be obtained thanks to the usual Galerkin method.

Since this type of construction is rather standard, we won’t detail it here, and refer to [5] for a precise
treatment of this procedure in our system, or for instance to [3], Chapter 3, for a more generic approach.

In next subsection, we obtain natural estimates for the quantity u®.

2.2.2 Estimates for u®

Taking u® as test function in (36) and using (35), we obtain the following estimate (since ux ¢ is divergence
free and f° is nonnegative)

1 t
3 { [+ reoeerag + [ [ 9P
T3 0 T3

3

<=3 [ [ om0 axas

¢
+ 2/ / u®(s,x) - my(f°v)(s,x)dxds
o J13
1
+5 {0 veieapax ). (39)
2 /s
so that using p® > 0 and Gronwall’s lemma together with estimates (37)—(38), we get
[0®[lLee @z + Iu®llLz @) < Pr(w, b, v) exp(Pr(w, h,v)). (40)
Taking then J,u® as a test function in (36), we get (using again p® > 0 and f© > 0)
1
100a®[13 + 5 IV’ (0113 < 11+ p°) (@ @)oo [ Vct® [z 00012 + 2 1 (£°9)]|2 [ 9ru®2
1
+ 2 [mo(fo7) oo 1|2 0r0°l2 + 5 [ Vxw]l3,
so that using Young’s inequality, estimate (40) above, and estimates (37)—(38), we end up with
|0}z < Pr(w, b, v) exp(Pr(w, h,v) [[ulies) + 1], (41)

thanks to the elementary convolution inequality [|u* ¢[[oc < [[ul[Le(r2)/l¢]l2-
Given any triplet (w,h,v) € €52 x €1 NL™® x €1 of initial data, we can then define the mapping
S: 6 (L) — € (L)

ur— u®.

In next paragraph, we use Schauder’s fixed point Theorem for this mapping.



2.2.3 Application of Schauder’s Theorem

According to the estimates of the previous paragraph, we see that for any u € €°(L3,,),
[S(w)[|Lse(nzy < Pr(w, h,v)exp(Pr(w,h,v)) = R.

Hence, S sends Bg (the closed ball of radius R of the normed space 47 (L3;,)) to itself.

Thanks to estimates (40) and (41), a bounded subset of € (L2;,) is sent by S to a bounded subset of

H; ., and Lemma 4.3 of the Appendix allows us to conclude that S(Bp) is relatively compact in 6 (L3;, ).

t,x?

It remains to study the continuity of S. Notice first that for any u € € (L3;, ), any weak bounded solution
of (34) or (35) is a renormalized solution in the DiPerna-Lions sense introduced in [10]: the absorption
coefficient (= 1) of the first equation and the right-hand side of second one are bounded and one easily
checks that the vector fields (¢,x,€&) — (§,ux* p(t,x) — €) and (¢,x) — u* @(t,x) satisfy all the desired
assumptions given in [10]. Now if (u,), converges to u in €2 (L2;,), we know from the previous step that
(S(uy,))nen has a converging subsequence. Showing that the whole sequence converges to S(u) reduces hence
to prove that it has only one accumulation point, namely S(u). Assume therefore that v € €?(L3,,) is
an accumulation point of (S(u,))nen and denote by o the corresponding extraction. Since (Uy(p))n is still
bounded, using (40)—(41) and adding a subsequence if necessary, we may assume that v is also the limit of
(S(up))nen in H ,, for the weak topology. On the other hand, since (u,())n still converges to u in (L3, ),
DiPerna-Lions stability result of [10] ensures that (f,(n))n and (pe(n))n both converge in Li | (for all p < o)
to f and p, the corresponding (unique) weak and bounded solutions of the associated equations (with initial
data h and v and vector field defined by u). At this point, we have enough (strong) convergences to ensure
that all the nonlinear terms of the fluid equation indeed converge to the expected limit : v € H%’x is hence
a weak solution of (36) with w as initial datum. We already mentioned the uniqueness of solutions for this

equation, so that we eventually get v =u® = S(u).

S is hence a continuous map from a closed convex nonempty set of a normed space to itself, and it has
a relatively compact range. Thanks to Schauder’s fixed point Theorem (see [11] for instance), S has a fixed
point which is a solution to (30) — (33) with initial data (w,h,v). This concludes the Proof of Proposition
2.1. O

Reintroducing the parameter £ > 0, we have obtained the existence (for any T' > 0, ¢ > 0) of a divergence-
free vector field u. € Ht17x, and two nonnegative functions f. € (gtl,x,ﬁ and p. € 6}, solutions of system (26)
- (29).

Note that since u. x . € Ly and f; is compactly supported, one can show without difficulty that
fe(t, -, ) remains compactly supported for a.e. ¢t (with a support depending on ¢).

In next section, we pass to the limit when ¢ — 0 in the functions u., f- and p., and show that their limit
is a (weak) solution of (15) — (18).

3 Passage to the limit and Proof of the main Theorem

We keep on proving Theorem 1.1 in this Section. We start with a local result of existence:

Proposition 3.1. Under the assumptions on the initial data of Theorem 1.1, there exists an interval Jy, 1=
[0,t.] on which the system (15) — (18) admits a weak solution (p, f, u) (c¢f. Remark 1.1 for a definition of
weak solutions). Furthermore p and [ are nonnegative, and

p € L (Jin; L¥/3(T?)),
f € L®(Jin x T2 x R3),
u € L2(Jin; HY(T?)) N L (Jin; L2(T?)).



Proof of Proposition 3.1 :
We begin with the Proof of bounds for the solution of (26) — (29), which do not depend on e.

In the sequel P (U, pin, fin) [or more simply P will denote a polynomial function (with positive
coefficients) of the quantity ||/1+ pin Winll2 + || fin|lco + M2 fin. Note that Pip will always be independent of
€, but may depend on T'.

3.1 Uniform bounds with respect to ¢

Let us first recall a classical Lemma linking velocity moments, the proof of which may be found in [6]
(Lemma 1, Section 3.3):

Lemma 3.1. Let vy > 0 and h be a nonnegative element of L°°([0,T] x T3 x R3), such that m~h(t,x) < +o00
for a.e. (t,x). The following estimate holds for 0 < a < ~:
4 at3
mah(t’ X) < §7T||h(t7x7 )HLOO(RS) +1 m"/h(tv X) .

Thanks to the maximum principle in eq. (28), we observe that

I felloo < [l finlloo €°7 (42)

from which, thanks to Lemma 3.1, we deduce

lmo ()55 < PF Mafe(t)*/®, (43)
Ima fe()ll5/0 < PR Mafe()°. (44)

Since f. is compactly supported and solves eq. (28) strongly, one gets by multiplying this equation by |£|?
and integrating in x, &:

d
&Mgfa + 3Msyf. = 2/11-3(115 * @) -my(f)dx. (45)

Using the previous estimates, we hence have
=1
d —N—
g Mafe +3Mafe < [u(®)lls lleelly [l fe(®)lls)s
< P lu=()ll5 Mafe(t)*”,

from which we easily deduce

t 5
Mafu(t) < {M2 e | ||u5<s>||5ds} .
0

Using the Sobolev injection H*(T?) — L5(T3), one gets

t t 5
Mafu(t) < P {1 = [ ut)las + vxue<s>||2ds} | (16)
0 0
Using the previous estimate with (43) — (44), we obtain

' t t 3

Imofe(t)ls 5 < PR {1 + [ ol as+ [ |vxu5<s>||2ds} , (47)
. t t 4

Imfet)]s 0 < P2 {1 n / a(s)], ds + / |vxue<s>||2ds} . (48)



The energy estimate (39) is satisfied with v := pf,, w := uf,, and rewrites

% {/Ts(l +Pe(t,x))u5(t,x)2dx} + /Ot /T3 Vxue (s, x)[* dx ds

<2 [ s 0Pmo(te <) axds

2 0 ']1‘3
t
—|—2/ / u(s,x) - my(fey)(s,x)dxds
0 JT3
’]1‘3

+3 { JCET A |ufn<x>|2dx} ,

so that (since p. is nonnegative) we obtain

1 ¢ 1 . ¢
S IOl + [ IV (o) s < SIVIF a3 2 [ e mufo(s)]s s
0 0

t
<Ppz [ fucmif(s) ds
0

Using Holder and Young inequalities, we get

1 1 ! in in i in ‘
I+ 5 [ IV (9lFds < PE+PF [ fuclFds+ Py [ fo()]R s

We then obtain thanks to (48)

t t s 4
in in 2
e (6)]2 + / Vs (s)]3 ds < Pt + Pin / {ue<s>||§ + / IVue (o) do} ds.
Denote by Z the maximal solution of the Cauchy problem
() =Prz@t)?t,  z(0)=PF,

defined on some maximal interval Ij,. Then if J;, is the closure of I;,,/2, using the nonlinear Gronwall
Lemma 4.1, we get for ¢t € Jiy:

t
e ()15 +/O [V (s)[5 ds <[]l == KF.

Remark 3.1. Notice that thanks to Lemma 4.2 (changing P if necessary) we always have | Jiy| > 1/Pi.

We deduce from the previous local estimate that (u.). is bounded in L™ (Jiy; LQ('I[‘P’)) NL? (Jins H' (T3)).
Using (46), we hence get the boundedness of (Msf.). in L*°(Ji,) and then, with (43) and (44), we see that
(mof.)e and (my f.). are respectively bounded in L (Jiy; L/3(T?)) and L™ (Jiy; L/*(T?)). Thanks to a
classical transport estimate, using (28), we see that (p.). is bounded in L™ (Jiy; L5/3(T3)). From (46), we
deduce that for all e > 0 and t € Jiy,

My f.(t) < K7 (49)

3.2 Compactness properties

Recalling Proposition 2.1 of existence of a solution to the regularized problem (for a given ¢), we deduce
from the previous (uniform in ) bounds the existence of p € L (Jin; L*/3(T3)), f € L (Jim; L®(T? x R3))

10



such that, up to a subsequence,
(p)e =, 0 in L= (T LY3(T%) — 5,
(fe)s E:\Of in LOO(Jin;]—-‘Oo(’]r3 X RS)) —*

Using the boundedness of (Msf.). in L°°(J;,) and adding a subsequence if necessary, one manages to also

show that o/
(mofs)s and (mO(fszE))s 8:\0 mof in LOO(JinQL / (T3)) - %

(my fe)e and (my(feye))e =, muf in L™ (Jin; L4(T?)) — %,

Finally, using the bounds on (u.). and the Sobolev injection H!(T?) < LS(T?3), we get the existence of
u € L™ (Jin; L2(T%)) N L?(Jin; HY, (T?)) such that
(u.): — uin L?(Ji,; HY(T?)),
e—0
i T2( 7 - T.6(T3
(ue)e ,uin L (Jm,L (T ))7

(ue)e U in L (Jin; L? (TS)) — %,
and of course (ue * . ) converges also towards u for the same topologies.

3.3 Weak convergence of nonlinear terms

In view of the previous weak convergences, it only remains to check that the nonlinear terms converge to the
expected limits, so that the weak limit triplet (f, p,u) will indeed be a solution of our system. Notice that
since all the bounds and weak extractions are performed on the local interval Ji,, the constructed solution
will only be local in time. In the last subsection, we shall explain how to extend it. Until then, through all
the current subsection, the index ; will refer to the intervall J;, in the notation “L¥(E)”.

Notice that the system can be written

diveu, = 0, (50)
6tf5 + diVx,ﬁ(ast) - 2f6 =0, (51)
atpe + divx(ps(ue * 905)) = mO(fe’Ys)a (52)
P{at[(l + ps)ue] + divy [(1 =+ pe)(ua * @s) ® ue} } - Ayu, = P{le(fe’)/a) - uemO(fe'VE)}v (53)

where a.(t,x, &) := (&, [u:(t) x p](x)).

In order to handle the nonlinear terms, we shall use several times the Proposition 4.1 of the Appendix.

We denote by .#, the vector space of bounded measures on Ji, x T3.

All the coming facts and their proofs are true up to some (finite number of ) extractions that we don't mention
in the sequel.

Fact 1: The products (p: (ue * c))e and (peuc)e both tend to pu in M.

Proof of Fact 1: Using Proposition 4.1 of the Appendix, these two terms are handled in the same
way: the velocity term (convoluted by . or not) plays the role of (a.)., and is bounded in L7 (WL?),
whereas (pz)- plays the role of (b.). and is bounded in L°(LY/3) ((5/3)' = 5/2 < 2* = 6). Thanks to
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Fact 2 :

Fact 3

(52) and the previous bounds (see subsection 3.1), (d;p¢). is bounded in LZ(H;™), (where m is taken
large enough). We hence have

(pe (Ue *x pe))e P in My — wx,

(peuc)e — pu, in Ms—wx.
e—0

{(pe + 1)ue, uE>L2 — {((p+ 1), u>L%’x.

t,x €0

Proof of Fact 2. We wish to prove that

lim/ /(pe+1) |u€\2dxdt:/ /(p+1) lu|? dx dt. (54)
=0 /. Jrs Jin J T3

First write, since u. is divergence-free,

/ /(Ps+1)\u5\2dxdt:/ /(ps+1)u€~u5dxdt
Jin JT3 Jin JT3

:/ / P[(pe + 1)uc] - uc dxdt.
Jin J T3

Harmonic analysis and singular integral theory allow to show that PP is bounded from L] (L%) to itself,
for all p €]1,00[ and ¢ € [1,00] (see for instance [19]). Since the strong continuity of an operator
implies its weak sequential continuity, we see that P is sequentially continuous from Lt2 (Lio/ 23) to
itself, equipped with the weak topology. But we have seen in Subsection 3.1 that (u.). is bounded

in L2(HL), which is embedded in L?(LS) by Sobolev injection, and (p.)e is bounded in L (L3/?) so

that by Holder inequality, ((p. + 1)u.). is bounded in L2 (L;O’co/ 23) and hence (up to a subsequence)

(P[(Pe +1) ug])a converges weakly to P[(p + 1)u] in L2(L3%/2%). We now can use Proposition 4.2 of

the Appendix, with ¢ = 2 and r = co. Indeed,

— (u.). is bounded in LZ(WL?) N L (L2),

— since O;P = P, (53) implies that (@]P’[(pg + l)ug]) is bounded in L} (H;™) for m large enough,
>4

— (30/23)' = 30/7 < 2* = 6.

Hence the product {]P’[(pg +1)u.]- ug} converges to P[(p+ 1) u] - u in 4, — *. In particular, using
€
1, xTe as a test function, we get Fact 2.

(ue)e and (ue * p:)e both strongly converge to u in Lﬁx.

Proof of Fact 3: We estimate

/ |u5—u|2dxdt§/ /(1+p5)|ugfu\2dxdt
Jin JT8 Jin JT3
:/ /(1—|—p5)|u5|2dxdt+/ /(1+p5)\u|2dxdt
Jin JT3 Jin JT3
—2/ /(1—|—p5)ug-udxdt.
Jin JT3

The first term of the second line converges to the same expression, but without e: this is exactly
Fact 2 proven above. We have the same behavior for the second term of this line: (p.). converges
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weakly to p in L(L2/3) — x and |u|?> € L}(L3). Eventually, for the third and last term, we use the
(already proven) convergence of [(1 + p.)u.]. towards (1 + p)u in Lf(LiO/QS), and the embedding

ucL}(LS) — Ltz(LiOﬁ). Strong convergence of (u.). is then directly transfered to (u. x . ).

Fact 4 (u.). converges strongly to u in all L{(LY), for ¢ <2 and d < 6.

Proof of Fact 4: Thanks to Fact 3, we have strong convergence of (u.)., and hence almost everywhere
convergence. Since this family is bounded L(LS), we get the desired convergences.

Fact 5 (f- (u. x.))e and (u. mo(f-7:))e converges weakly in L' to respectively fu and umq(f).

Proof of Fact 5: The family (f.). converges weakly to f in Li"(Lg%) — %, which with the strong

convergence (Fact 3) of (u. * o). in L, < Lj,, ensures the weak L{ ¢ convergence. Similarly,

(mo(feve))e converges weakly to mof in Ltoo(Li/?’) — x, and Fact 4 ensures for instance that (u.)
converges strongly in L; (Li/ 2.

Fact 6 [(1+ p:) (u. * @) @ u.]_ converges weakly in Ly , to (1+ p)u®u.

Proof of Fact 6: Once again, it’s a “ weak X strong ” type of convergence here. First notice

2 6 1-90

e 2
where 6 := 21/22. Hence, by Holder’s inequality, we get the following interpolation result: L®(L2) N
L2(LS) — Lf/e(L,l(l/z). This implies that both (u.). and (ue * ). are bounded in Lf/e(L,lclm), and
the product [(u.*pe)@uc]. (which converges almost everywhere to u®u, see Fact 4) is hence bounded
in Ltl/e(L,lcl/4). Since § < 1 and 11/4 > 5/2, we get the strong convergence of this product to u® u,

in L}(L5/?), and we already know that (p.). converges weakly to p in L (L3/3) — .

Using all the weak convergences above, we end up with a local in time solution of our system, which
concludes the Proof of Proposition 3.1. .

Next subsection is devoted to the prolongation of the local solutions defined above in solutions defined
on [0,T7.

3.4 Energy estimate and global existence

In order to prove the existence of global solutions to our system, a standard strategy consists in reproducing
the previous step at time ¢, — €, obtain another local solution and paste it with the previous one, and so on
and so forth.

For such a strategy to succeed, one must ensure that the sequence of local times of existence does not
decrease too quickly. But, as noticed in Remark 3.1, the local time of existence is bounded below by 1/ Pi}l,
which is (by definition) a non-increasing function of ||v/T+ pinUinll2 + || finllco + M2 fin. We already know
(by maximum principle) that || f||c < €2'* fin, and this bound ensures that all possible extension will always
satisfy ||f]loco < €27 fin, since the sum of all local times of existence does not exceed T (well if it does, we're
done !). Tt is hence sufficient to prove that, for almost all ¢t € Ji,,

Maf(t) + [[v/1+ p(t)ut)ll2 < Mz fin + [[/1 + pin Winl2- (55)

Indeed, such an estimate would propagate for each local solution and we may hence bound from below all
the corresponding times of existence, which means that our strategy would end in a finite number of steps.
In fact (55) is a straightforward consequence of the following energy estimate:
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Proposition 3.2. The solution built in Proposition 3.1 satisfies for almost all t € Jiy,,
1 2 ' 2 3 [ 2
Mt )+ IVTH O )2y |+ [ 19006) 22y ds + 5 [u— € f dg dx ds
2 0 2 Jo Jrsxms
1
< 5 {Mefin+ VT pim inllEaes } (56)

Proof of Proposition 3.2:

We first use inequality (39) for solutions of the regularized system, and add the integral in time of (45) x%

to get

1 t
5 {MQfs(t) +[v1+p(t) ue(t)Hi2(T3)} Jr/0 ||qu5(s)||iz(1-3)d8

3 t
5[] me-Pragaxas
2 0 JT3xR3
1
< 5 {Mafin + IVITF pim il Ea(e)} + Re(),

where

RL(1) RZ(t)

3 t t
R =5 [ [ rmPa-s@agaxdse [ feu e -1 dgaxas

()

t
+// fe€-(ue*p. —u.)dédxds .
0 JT3xR3

Using Lemma 3.1, the maximum principle, and bound (49), we notice that for o > 0 small enough, (mq fc)e
is bounded in L (L3/2). Now recall that . is chosen so that |1 —~.|(&) < Li¢[>1/e, hence

R;(t) S EaHm(leHL?O(Li/‘Z)||u€||if(Lg)7

which goes to 0 with ¢ since (u.). is bounded in L7(HL) < L?(L$). This shows that (R}). — 0 uniformly
E—

2

on Ji,, and a similar Proof applies for (R

)e. Then, we have

t
3 = .
Rs(t)_/o /TSXRS(fgg ve)d€dxds,

where (v.). is bounded in L?(L$) and converges to 0 in Lix — L;x. For values of £ satisfying |&] <

(|[vell1 +€) "2, we simply use the maximum principle for (f.). to see that their contribution goes to 0 with
¢ (uniformly i