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1 - Introduction

Starting from the pivotal works of Smoluchowski [50, 51], coagulation-frag-
mentation models have been widely used to describe the formation and the
break-up of a wide range of clusters/polymers in as many areas as physics
(aerosols, rainsdrops, smoke, sprays), chemistry (polymerisation processes), as-
tronomy (formation of galaxies) and biology (hematology, animal grouping).

A detailed description of both processes, coagulation and fragmentation will
often reveal highly complex mechanisms, which will make realistic model very
complicated. Speaking of fragmentation and thinking of the break-up of droplets
in particular, a detailed description would need to consider internal oscillations,
viscosity- and surface-tension effects etc. in order to determine the number of
subdroplets a single droplet is going to break up into (cf. [35] for instance).

Avoiding such a detailed description, the present review focuses on mathe-
matical methods for coagulation-fragmentation models, which are based on the
assumption that the particles/clusters/polymers are entirely described by their
mass/size.

There are (at least) three principle levels of description of a coagulation-
fragmentation process:
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First, there is the microscopic description of a finite ensemble of particles
undergoing stochastic interaction events (e.g. the Marcus-Lushnikov process,
see e.g. [30]) as originally proposed by Smoluchowski [50].

Secondly, and in the focus of this article, the mesoscopic description models
coagulation and fragmentation in terms of a nonnegative density f(t, x, y) de-
pending on time t, possibly position x and the cluster size/mass y. The time
evolution of this density is then given by a deterministic mean-field equation,
[51].

A third level of description uses the macroscopic scales, which are directly
linked to observations.

Linking limits between microscopic and mesoscopic descriptions involve the
convergence of stochastic processes (like the Marcus-Lushnikov process converg-
ing to the Smoluchowski equation, [45]) or mean-field limits. An example for a
limit from a mesoscopic mean-field equation to a macroscopic evolution equation
are fast-reaction limits, see e.g. [26] and the last Section of this paper.

The article is organised as follows:
In the following Section 2, the Smoluchowski coagulation equation is pre-

sented along with formal properties, a discussion of the phenomenon of gelation
and an example of the existence theory for the discrete Smoluchowski equation
by using a limit of finite-dimensional approximating systems.

In Section 3, discrete coagulation-fragmentation models are presented, most
importantly the Becker-Döring model. Moreover, the phenomenon of saturation
is presented.

The final and main Section 4 focuses on spatial inhomogeneous coagulation-
fragmentation models with diffusion: First, we revise the L1-existence theory as
developed in [36, 37]. We then present a duality method for diffusive equations
(see e.g. [33, 48, 18]), which allows to prove uniform-in-time L2-estimates.
This global L2-bound can be used to show existence of generalised coagulation-
fragmentation models as well as absence of gelation. Further, we present an
entropy method, which allows to prove convergence to equilibrium with explicit
rates. Finally, we shall demonstrate a fast-reaction-limit based on entropy-
estimates and a duality argument.

2 - The Smoluchowski equation : a model for coagulation

The Smoluchowski coagulation equation (see [50, 51, 42]) models the evo-
lution of a nonnegative mesoscopic density of clusters/polymers 0 ≤ f(t, y)
depending on time t ≥ 0 and the size variable y ∈ Y . The case Y = N is
called the discrete Smoluchowski equation while the continuous Smoluchowski
equation considers Y = [0,∞). The governing evolution of both the discrete
and the continuous Smoluchowski equation share the same structure:

(1) ∂tf(t, y) = Qcoag(f, f)(y) = Q1(f, f)−Q2(f, f)

On the right hand side of eq. (1), the quadratic terms Q1(f, f) and Q2(f, f)
describe the gain and the loss of clusters of size y due to binary coagulation
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events. Coagulation events involving more than two particles are considered
negligible in the Smoluchowski models.

The gain term Q1(f, f) accounts for the particles of size y being formed by
the coagulation of two smaller particles

{y′}+ {y − y′} a(y′,y−y′)−−−−−−−→ {y}, for all y′ < y.

Here, a(y′, y−y′) denotes a nonnegative and symmetric coagulation rate/kernel:

(2) 0 ≤ a(y, y′) = a(y′, y).

In case of the continuous Smoluchowski model with size variable y ∈ [0,∞), the
gain term Q1 is an integral term

(3) Q1(f, f) =
1

2

∫ y

0

a(y′, y − y′)f(y − y′)f(y′)dy′,

where the stoichiometric coefficient 1
2 reflects the fact that two clusters merge

into one.

The lost term Q2(f, f) comprises the loss of particles of size y due to the
formation of larger clusters:

{y}+ {y′} a(y,y′)−−−−→ {y + y′}, for all y′ ∈ Y.

In the continuous Smoluchowski equation this leads to the following integral

(4) Q2(f, f) = f(y)

∫ ∞

0

a(y, y′) f(y′) dy′.

The physics/chemistry/biology of the considered coagulation process is ex-
pressed in the coagulation coefficients a(y′, y) as given in (2), see e.g. the survey
of Drake [23].

The original works of Smoluchowski, for example, considered the coagulation
of colloidal particles according to

a(y, y′) = (yα + (y′)α)β(y−γ + (y′)−γ), α, β, γ ≥ 0, αβ ≤ 1,

where Smoluchowski studied in particular α = γ = 1/3, β = 1, see [50]. Another
class of coagulation rates are the ballistic kernels

a(y, y′) = (yα + (y′)α)β |yγ − (y′)γ |, α, β, γ ≥ 0, αβ + γ ≤ 1,

or kernels of the type

a(y, y′) = yα(y′)β + (y′)α(y)β , α, β ∈ [0, 1].

Amongst the latter, the Golovin kernel (α, β) = (0, 1) [32] has been used to
describe cloud droplets while the Stockmeyer kernel α = β = 1 [54] models
branched-chain polymers.
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2.1 - Formal properties of the continuous Smoluchowski equation

This Section summarises formal properties of the continuous Smoluchowski
equation. Analog results for discrete coagulation (and coagulation-fragmenta-
tion) models will be stated below as needed.

At first, we derive a weak formulation of eq. (1): By multiplication with
a suitable test-function ϕ(y) and integration over y ∈ [0,∞), we obtain with
Fubini’s theorem

d

dt

∫ ∞

0

f(t, y)ϕ(y) dy =

∫ ∞

0

Qcoag(f, f)ϕ(y) dy

=
1

2

∫ ∞

0

∫ ∞

0

a(y, y′)f(y)f(y′)(ϕ′′ − ϕ− ϕ′) dydy′,(5)

where we have used the shorthand notation ϕ = ϕ(y), ϕ′ = ϕ(y′) and ϕ′′ =
ϕ(y + y′).

In particular, with the choice ϕ(y) = yk and sign(ϕ′′−ϕ−ϕ′) = sign(k−1),
it follows formally that

t 7→
∫ ∞

0

ϕ(y) f(t, y) dy =







ց k < 1,
constant k = 1,

ր k > 1.

The testfunction ϕ = 1 shows that the number of particles
∫∞
0 f(t, y) dy is

decreasing due to the coagulation process.

More importantly, testing with ϕ(y) = y implies the formal conservation of
mass

d

dt

∫ ∞

0

y f(t, y) dy =

∫ ∞

0

y Qcoag(f, f) dy = 0.

However, without further assumptions on the coagulation kernel, it is in general
only possible to prove that the mass is non-increasing: Considering a cut off R >
0 and a sequence of test-functions ϕ(y) = min{y,R} satisfying ϕ′′ −ϕ−ϕ′ ≤ 0,
we conclude by Fatou’s lemma that the map

t 7→
∫ ∞

0

min{y,R} f(t, y) dy R→∞−−−−→
Fatou

∫ ∞

0

y f(t, y) dy

is non-increasing.
It is indeed a well known phenomenon of mesoscopic coagulation models that

the formal conservation of mass is violated for sufficiently growing coagulation
coefficients. This phenomenon is called gelation and shall be discussed further
in the following Section 2.2.

We conclude this Section by noting that for all kernels a(y, y′) satisfying

a(y, y′) ≤ a(y, y + y′) + a(y′, y + y′), y, y′ ∈ Y,

it follows formally from testing with ϕ(y) = pf(t, y)p−1 that the Lp-Norm is
non-increasing:

t 7→ ‖f(t, ·)‖Lp non-increasing for p ≥ 1.
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2.2 - Gelation, gelation time and gelation profiles

We shall consider in particular the product coagulation kernel a(y, y′) = y y′.
At first, we restate the weak formulation (5), i.e.

(6)
d

dt

∫ ∞

0

f(t, y)ϕ(y) dy =
1

2

∫ ∞

0

∫ ∞

0

yy′f(y)f(y′) (ϕ′′ − ϕ− ϕ′) dy′dy.

Introducing the moments

M0(t) =

∫ ∞

0

f(t, y) dy, M1(t) =

∫ ∞

0

y f(t, y) dy,

we test (6) with ϕ(y) = 1 and obtain

d

dt
M0(t) = −1

2

∫ ∞

0

∫ ∞

0

yy′f(y)f(y′) dy′dy = −1

2
M2

1 (t).

Thus, integration over a time interval [0, T ] for any T > 0 yields

M0(T ) +
1

2

∫ T

0

M2
1 dt =M0(0),

and 0 ≤M0(T ) ≤M0(0) is bounded for all T > 0, which implies in return

M1 ∈ L2((0,∞)) =⇒ M1(t) < M1(0) after some finite t ≥ 0.

The phenomenon that the formal conservation of mass is violated within finite
time is called gelation and

Tg = inf{t ≥ 0 : M1(t) < M1(0)}

is called gelation time. At gelation a phase transition occurs, which marks the
formation of clusters of infinite/macroscopic size.

A more general result holds for coagulation kernel of the form

a(y, y′) = yα(y′)β + (y′)α(y)β , α, β ∈ [0, 1].

For these kernels, gelation occurs provided that λ = α + β ∈ (1, 2]. In fact, it
has been shown in [28] that

Mk =

∫ ∞

0

yk f(t, y) dy ∈ L2((0,∞)) for k ∈
(

λ

2
,
1 + λ

2

)

,

which implies, in particular, that M1 ∈ L2(0,∞) for λ > 1.

An interesting question addresses the characterisation of the gelation time
Tg. While constituting an open problem for many general coagulation coeffi-
cients, the product kernel a(y, y′) = y y′ allows to answer it explicitly.
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First, we calculate explicitly the blow-up time of second moment

M2 =

∫ ∞

0

y2 f(t, y) dy,

which evolves according to

d

dt
M2(t) =

1

2

∫ ∞

0

∫ ∞

0

yy′f(y)f(y′)
(

(y + y′)2 − y2 − (y′)2
)

dy′dy =M2
2 (t),

and therefore blows-up at time T2 = 1
M2(0)

(recall the explicit solution 1
M2(t)

=
1

M2(0)
− t).

With gelation time marking the appearance of infinite size clusters, one
can conjecture that gelation should correspond to the blow-up of higher order
moments. In the case of the product kernel a(y, y′) = y y′, this conjecture can
be proven. In particular, we find that Tg = T2: Defining the formal Laplace-
type-transform

E(t, p) =

∫ ∞

0

e−py yf(t, y) dy, ∂pE(t, p) = −
∫ ∞

0

e−py y2f(t, y)dy,

we observe that E(t, 0) = M1(t) and ∂pE(t, 0) = −M2(t). Next, by testing (6)
with ϕ(y) = e−pyy for p ∈ [0,∞), we calculate

∂tE(t, p) =

∫ ∞

0

e−pyy2f(y) dy

∫ ∞

0

e−py′

y′f(y′) dy′

−
∫ ∞

0

e−pyy2f(y) dy

∫ ∞

0

y′f(y′) dy′

and obtain the following Burgers-type equation

∂tE(t, p) + (E(p)− E(0)) ∂pE(t, p) = 0.

Since by construction ∂pE(t, p) ≥ ∂pE(t, 0) = −M2(t) it follows that the above
Burgers equation develops shocks at first at p = 0 at the same time as the
second order moment blows up. As a results of the shock at p = 0, the value of
E(t, 0) =M1(t) has to decrease, i.e.

E(t, 0) =M1(t) < M1(0), t > T2,

and we conclude that gelation occurs at the same time as the second order
moment blows up, i.e. Tg = T2. For general coagulation coefficients, the char-
acterisation of the gelation time is often an open problem.

No gelation occurs in at most linearly growing kernels. Examples for which
conservation of mass is proven rigorously (see e.g. [2] and Section 2.3 below)
are

a(y, y′) ≤ C(1 + y + y′),
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and
a(y, y′) = yα(y′)β + (y′)α(y)β , λ = α+ β ≤ 1.

In the particular case of the linear kernel a(y, y′) = y + y′, one can again
explicitly calculate that no gelation occurs by using a Laplace transform: For
p ≥ 0, we define

F (t, p) =

∫ ∞

0

e−p yf(t, y) dy,

and observe that

F (t, 0) =

∫ ∞

0

f(t, y) dy =M0(t), ∂pF (t, 0) = −
∫ ∞

0

y f(t, y) dy = −M1(t).

First, we calculate for a(y, y′) = y+y′ that as long as the mass is conserved,
i.e. M1(t) =M0(t), we have

d

dt
M0(t) = −M0(t)M1(0), M0(t) =M0(0) e

−M1(0) t.

Then, we compute

∂tF (t, p) =
1

2

∫ ∞

0

∫ ∞

0

(y + y′) [e−p (y+y′) − e−p y − e−p y′

] f(t, y) f(t, y′) dy′dy

= −F (t, p) ∂pF (t, p)−M1(0)F (t, p) +M0(t) ∂pF (t, p).

Thus, we have

∂tF (t, p) +
(

F (t, p)−M0(0) e
−M1(0) t) ∂pF (t, p) = −M1(0)F (t, p),

which implies

F

(

t, p0 −
1− e−M1(0) t

M1(0)
[M0(0)− F (0, p0)]

)

= e−M1(0) t F (0, p0).

and the function

p0 7→ p0 −
1− e−M1(0) t

M1(0)
[M0(0)− F (0, p0)]

is one-to-one because its derivative is

p0 7→ 1 +
1− e−M1(0) t

M1(0)
∂pF (0, p0)

and
−∂pF (0, p0)
M1(0)

=

∫∞
0
e−p0 y y f(0, y) dy
∫∞
0
y f(0, y) dy

≤ 1.

The Smoluchowski coagulation process continuously decreases the number
of particles. Thus, even if the mass is conserved, there occurs a loss of mass in
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infinite time. In [9], Carr and da Costa showed for the discrete Smoluchowski
equation with ai,j > 0 for (i, j) ∈ N× N that

Mk(t) =

∞
∑

j=1

jk cj(t) → 0 as t→ ∞, k ∈ [0, 1),

which marks a loss of mass in infinite time if M1(t) = M0(0) is conserved for
all t ≥ 0. An analog results holds for the continuous Smoluchowski equation for
a(y, y′) > 0 for y 6= y′ on (y, y′) ∈ Y × Y , see [38]. Assuming in addition that
a(y, y′) ≥ (yy′)λ for λ ∈ [0, 1) and f in(y) ≡ 0 a.e. on y ∈ (0, δ) for δ > 0, then
Mk(t) ≤ Ckt

k for all k ∈ (0, 1) (see [38]).

Another interesting (and in general open) question concerns the profiles of
the solution at gelation. For the kernel

(7) a(y, y′) = yα(y′)β + (y′)α(y)β , α, β ∈ [0, 1],

with λ = α+β ∈ (1, 2], there is the conjecture that at gelation time (see [28, 38])

f(Tg, y) ∼ y−
3+λ
2 as y → ∞.

The dynamical scaling hypothesis proposes (see e.g. [22]) that as the mean
particle size s(t) → ∞ as t → T∗ the particle density approaches a self-similar
profile:

f(t, y) ∼ 1

s(t)τ
ϕ

(

y

s(t)

)

as t→ T∗.

In the case of the kernel (7) which satisfies a(ξy, ξy′) = ξλa(y, y′), it is con-
jectured that 1

s(t)τ ϕ
(

y
s(t)

)

is a self-similar solution with τ = 2 for T∗ = ∞ if

λ ∈ [0, 1) and with τ = (λ+ 3)/2 for T∗ = Tg if λ ∈ (1, 2]. The case λ = 1 with
α > 0 requires a modified ansatz, see [22].

Recently, Niethammer and Velázquez showed in [44] for continuous kernels
with homogeneity γ ∈ [0, 1), i.e. a(ξy, ξy′) = ξλa(y, y′), which satisfy the
growth condition a(y, y′) ≤ C(yγ+(y′)γ) that solutions tend towards self-similar
solutions of the form

f(t, y) ∼ 1

tα
ϕ
( y

tβ

)

with α = 1 + (1 + γ)β,

where the self-similar profile features so called fat tails, i.e. for any ρ ∈ (γ, 1),
there exists a continuous, self-similar profile

ϕ(t, y) ∼ (1− ρ)y−(1+ρ).

2.3 - Existence of the discrete Smoluchowski equation

The alternative to continuous-in-size models are discrete-in-size models with
a size variable i ∈ N = Y . By denoting the cluster density ci(t) ≥ 0 with
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c = (ci), we consider

d

dt
ci(t) = Qcoag(c, c) =

1

2

i−1
∑

j=1

ai−j,j ci−j(t)cj(t)−
∞
∑

j=1

ai,j ci(t)cj(t),(8)

ci(0) = cini ,(9)

for the coagulation coefficients ai,j = aj,i ≥ 0.
The system (8) can be approximated by finite-dimensional systems of ODEs

for (ci), i = 1, .., N with a cutoff index N :

d

dt
(cNi )(t) =

1

2

i−1
∑

j=1

ai−j,j c
N
i−j(t) c

N
j (t)− cNi (t)

N
∑

j=1

ai,j c
N
j (t),(10)

cNi (0) = cini .(11)

The weak formulation of the approximating cutoff models reads as:

(12)
d

dt

N
∑

i=1

ϕi c
N
i =

1

2

N
∑

i=1

N
∑

j=1

ai,j (ϕi+j 1j≤N−1 1i≤N−j − ϕi − ϕj) c
N
i cNj .

The existence of solutions to the cutoff models (12) follows from the stan-
dard (Cauchy-Lipschitz) theory for autonomous systems of ODEs: Suppose
a = a(cN ) ∈ C1(RN ,RN ) and cN (0) ∈ RN , then, there exists a unique solution
of the ODE system

d

dt
cN (t) = a(cN (t)), cN (0) = cin.

on a maximal interval of existence [0, T ) for T > 0. Moreover, if T <∞, then

lim
t→T−

‖cN (t)‖ = ∞.

While global-in-time solutions cannot be expected in general for superlinear
ODEs, the system (10) satisfies the natural a priori estimate of non-increasing
mass:

d

dt

N
∑

i=1

i cNi =
1

2

N
∑

i=1

N
∑

j=1

ai,j [(i + j)1j≤N−1 1i≤N−j − i− j] cNi cNj ≤ 0,

so that

(13)

N
∑

i=1

i cNi (t) ≤
N
∑

i=1

i cini .

Therefore, given nonnegative initial data cini , i ∈ N and thus considering non-
negative solutions 0 ≤ cNi (t) for all N > 0, the a priori estimate (13) allows to
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extend solutions to global solutions (defined on [0,∞)). Note that the global
solutions of the coagulation system (10), (11) for any cutoff size N exist without
any further restriction on the nonnegative coefficients ai,j .

The uniform boundedness of the mass (13) and the nonnegativity of the
solution cNi imply also the weak-∗ compactness of the sequence cNi : Assuming
finite initial mass

Min =

∞
∑

i=1

i cini <∞,

it follows from (13) that for all cutoff N > 0

N
∑

i=1

i cNi (t) ≤
N
∑

i=1

i cini ≤Min.

Therefore, for all i ∈ N, the approximating sequence (cNi (t))N∈N is bounded
in L∞([0,+∞)) and converges, up to a subsequence, towards a function ci(t)
weakly-∗ in L∞([0,+∞)):

(14) cNi ⇀ ci in L∞([0,+∞)) weak-*.

Strong compactness of the sequence cNi can be shown under the assumption
of sublinear coagulation coefficients:

(15) 0 ≤ ai,j ≤ K (i + j).

Then, for any i = 1, .., N , and using cNi (t) ≤Min

| d
dt
cNi (t)| ≤

∣

∣

∣

∣

1

2

i−1
∑

j=1

aj,i−jc
N
j (t) cNi−j(t)

∣

∣

∣

∣

+ cNi (t)

∣

∣

∣

∣

N
∑

j=1

ai,jc
N
j (t)

∣

∣

∣

∣

≤ 1

2
M2

in

i−1
∑

j=1

aj,i−j +MinK

N
∑

j=1

(i + j) cNj (t)

≤ 1

2
M2

in

i−1
∑

j=1

aj,i−j +MinK(i+ 1)Min.

so that (thanks to Ascoli’s Theorem)

cNi (t)
N→∞−−−−→ ci(t) for a.e. t ≥ 0.

The assumption of sublinear coagulation rates (15) allows also to prove the
propagation of superlinear moments like in the following estimate of a logarith-
mic moment: Assume that the initial first logarithmic moment is finite, i.e

Lin =
∞
∑

i=1

(i ln i− i+ 1) cini <∞,
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and denote the approximating first logarithmic moment by

LN(t) =
N
∑

i=1

(i ln i− i+ 1) cNi (t).

Then, by the weak formulation (12) with the test-sequence ϕ(i) = i ln i−i+1,
we estimate with

ϕ(i+ j)1j≤N−1 1i≤N−j − ϕ(i)− ϕ(j) ≤ i ln(1 + j/i) + j ln(1 + i/j)

and with the assumption of sublinear moments (15) that

d

dt
LN(t) ≤ 1

2

N
∑

i=1

N
∑

j=1

ai,j

(

i ln(1 + j/i) + j ln(i/j + 1)
)

cNi (t) cNj (t)

≤
N
∑

i=1

N
∑

j=1

K (i + j) i ln(1 + j/i) cNi (t) cNj (t),

where we have used a symmetry argument. Continuing by using ln(1 + x) ≤ x
and x ln(1 + x) ≤ (x lnx− x+ 1) + x, we estimate

d

dt
LN (t) ≤

N
∑

i=1

N
∑

j=1

K
[

i2 ln(1 + j/i) + i j ln(1 + j/i)
]

cNi (t) cNj (t)

≤
N
∑

i=1

N
∑

j=1

K
[

i j + i j ln(1 + j)
]

cNi (t) cNj (t)

≤
N
∑

i=1

N
∑

j=1

K i
[

2j + (j ln j − j + 1)
]

cNi (t) cNj (t)

≤ KMin (2Min + LN(t)).

Using Gronwall’s lemma, for any t ∈ [0, T ], N ∈ N, we obtain

(16) LN (t) ≤ (2Min + Lin) e
K Min T .

This implies in a first limit cNi (t) → ci(t) that

sup
t∈[0,T ]

N
∑

i=1

(i ln i− i+ 1) ci(t) ≤ C(K,T, Lin),

and, in a second limit N → ∞ that

sup
t∈[0,T ]

∞
∑

i=1

(i ln i− i+ 1) ci(t) ≤ C(K,T, Lin).
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P r o p o s i t i o n 2.1 (Existence of mass conserving solutions).
Assume nonnegative at most linearly growing coagulation coefficients

0 ≤ ai,j ≤ K (i + j).

Consider nonnegative initial data 0 ≤ cini with finite first-logarithmic moment

Lin =

∞
∑

i=1

(i ln i− i+ 1) cini <∞.

Then, there exists a weak solution ci ∈ L∞
loc([0,+∞)) to the Smoluchowski

equation with initial data cini

d

dt
ci(t) =

1

2

i−1
∑

j=1

ai−j,j ci−j(t) cj(t)− ci(t)

∞
∑

j=1

ai,j cj(t), i ∈ N,
ci(0) = cini , i ∈ N.

In particular, the term
∑

j∈N ai,jcj lies in L1
loc([0,+∞)) for all i ∈ N.

Moreover, the total mass
∑

i∈N i ci(t) is conserved for all t ∈ [0,+∞), i.e.
no gelation occurs.

P r o o f. [Proof of Proposition 2.1]
We pass to the limit N → ∞ in the approximating cutoff system. Remembering
the uniform bound

∑N
i=1 i c

N
i (t) ≤Min for all t ≥ 0 and the strong convergence

cNi (t) → ci(t) for a.e. t ≥ 0, it is clear that (for any given i ∈ N)
d

dt
cNi ⇀

d

dt
ci in D′((0,+∞)),

and

i−1
∑

j=1

aj,i−j c
N
j (t) cNi−j(t) →

i−1
∑

j=1

aj,i−j cj(t) ci−j(t), for a.e. t ≥ 0.

The crucial point is to prove that (for all i ∈ N)
N
∑

j=1

ai,j c
N
j (t) →

∞
∑

j=1

ai,j cj(t), L1([0, T ]),

for all T > 0 in order to be able to pass to the limit in the cutoff system (10) in

13



the sense of distributions. We therefore estimate for any i ∈ N and N0 < N :

∣

∣

∣

∣

N
∑

j=1

ai,jc
N
j (t)−

∞
∑

j=1

ai,jcj(t)

∣

∣

∣

∣

≤
∞
∑

j=N+1

K (i + j) cj(t)

+

N
∑

j=1

K (i + j) |cNj (t)− cj(t)|

≤ K (i+N + 1)

(N + 1) ln(N + 1)− (N + 1) + 1

∞
∑

j=N+1

(j ln j − j + 1) cj(t)

+ K (i+N0)

N0
∑

j=1

|cNj (t)− cj(t)|+
K (i +N0 + 1)

(N0 + 1) ln(N0 + 1)− (N0 + 1) + 1

×
N
∑

j=N0+1

(j ln j − j + 1)
∣

∣

∣
cNj (t)− cj(t)

∣

∣

∣

≤ K (i +N0)

N0
∑

j=1

|cNj (t)− cj(t)|+
K (i+N0 + 1)

(N0 + 1) ln(N0 + 1)− (N0 + 1) + 1

×
∞
∑

j=N0+1

(j ln j − j + 1)
(

cNj (t) 1j≤N + cj(t)
)

≤ K (i +N0)

N0
∑

j=1

|cNj (t)− cj(t)|+
2KC(T,K,Lin) (i +N0 + 1)

(N0 + 1) ln(N0 + 1)− (N0 + 1) + 1
,

which proves the strong L1-convergence as N0 can be taken arbitrarily large in
the limit N → ∞. �

3 - Discrete coagulation-fragmentation models

In the previous Section, we have considered pure coagulation models and
seen that superlinear coagulation coefficients lead to gelation. In this Section,
we shall also take into account the opposing process of break-up of clusters.

We shall first focus on discrete-in-size coagulation-fragmentation models, i.e.
i ∈ N = Y , ci(t) ≥ 0, c = (ci), and we consider the evolutionary problem

d

dt
ci(t) = Qcoag(c, c) +Qfrag(c)

= Q1(c, c)−Q2(c, c) +Q3(c)−Q4(c).

Here, Qfrag(c) = Q3(c)−Q4(c) denotes a linear fragmentation term consisting
of a gain term Q3(c), which describes the creation of cluster of size i due to
break-up of larger clusters (βi+j,i is related to the number of clusters obtained
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after breakup):

{i+ j} Bi+jβi+j,i−−−−−−−→ {i}+ {j}, j > 1

and a loss term Q4(c), accounting for the fragmentation of clusters of size i:

{i} Bi−−→ all pairs {i− j}+ {j} with j < i.

Altogether, we consider the following discrete-in-size coagulation-fragmentation
model:

d

dt
ci(t) = Qcoag(c, c) +Qfrag(c)

=
1

2

i−1
∑

j=1

ai−j,j ci−jcj −
∞
∑

j=1

ai,j cicj +

∞
∑

j=1

Bi+jβi+j,i ci+j −Bici(17)

with the coagulation-fragmentation coefficients

ai,j = aj,i ≥ 0, βi,j ≥ 0, (i, j ∈ N),
B1 = 0 Bi ≥ 0, (i ∈ N),(18)

(mass conservation) i =
∑i−1

j=1
j βi,j , (i ∈ N, i ≥ 2).

The last assumption on the fragmentation coefficients in (18) ensures the formal
conservation of mass. This can be best seen in the weak formulation of the
discrete coagulation-fragmentation problem: Given a test-sequence ϕi, we have

∞
∑

i=1

ϕiQcoal(c, c) =
1

2

∞
∑

i=1

∞
∑

j=1

ai,j ci cj (ϕi+j − ϕi − ϕj),

∞
∑

i=1

ϕiQfrag(c) = −
∞
∑

i=2

Bici

(

ϕi −
i−1
∑

j=1

βi,jϕj

)

.

(19)

Thus, testing the weak formulation with the sequence ϕi = i, it follows analog
to the Smoluchowski equation that the mass in non-increasing in time:

(20) ρ(t) =

∞
∑

i=1

ici(t, x) dx ≤
∞
∑

i=1

icini (x) dx = ρin.

If gelation occurs in (20), then ρ(t) < ρin for a finite time t > 0.

3.1 - The Becker-Döring model

The Becker-Döring model is a classical discrete coagulation-fragmentation
model, which considers only interactions between monomers (i.e. clusters of
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size one) and polymers: First, the binary coagulation between monomers and
polymers leads to the formation of particles of size i

Q1(c, c) : {i− 1}+ {1} ai−1−−−→ {i}, 1 < i,

and the consumption of particles of size i

Q2(c, c) : {i}+ {1} ai−→ {i+ 1}, 1 ≤ i.

Secondly, fragmentation of monomers from polymers leads to the gain of parti-
cles of size i

Q3(c) : {i+ 1} bi+1−−−→ {i}+ {1}, 1 ≤ i,

as well as the loss of particles of size i

Q4(c) : {i} bi−→ {i− 1}+ {1}, 1 < i.

The Becker-Döring model, in which all coagulation and fragmentation events
involve monomers, can be rewritten as a coupled system of a monomer-equation
and a hierarchy of polymer-equations:

d

dt
c1 = −W1(c)−

∞
∑

i=1

Wi(c),

d

dt
ci =Wi−1(c)−Wi(c), i ≥ 2,

where
Wi(c) = ai c1 ci − bi+1 ci+1,

and we redefine (compared to (18)) a1 =
a1,2

2 , b2 =
b1,1
2 , and ai = ai,1, bi +1 =

bi,1 for i ≥ 2.

The theory of coagulation-fragmentation models is in general much better
developed when assuming a so called detailed balance condition, i.e. when assum-
ing the existence of a nonnegative equilibrium E(y) ∈ L1

1(Y ) = L1(Y, (1+ y)dy)
such that

a(y, y′)E(y)E(y′) = b(y, y′)E(y + y′), (y, y′) ∈ Y × Y.

The detailed balance condition is then also satisfied by all functions

Ez(y) = E(y) zy, y ∈ Y, for z ≥ 0,

yet Ez is not necessarily in L1
1(Y ). One therefore defines

zs = sup{z ≥ 0 : Ez ∈ L1
1(Y )}, zs ∈ [1,∞],

ρs =M1(Ezs(y)) ∈ [0,∞], ρs ∈ [0,∞],

and ρs is called the saturation mass and denotes the largest mass to be repre-
sented by a detailed balance equilibrium.
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A most important consequence of assuming a detailed balance condition is
the existence of a monotone entropy functional:

H(f |E) =

∫

Y

f
(

ln
( f

E

)

− 1
)

dy,

satisfying the following H-Theorem:

d

dt
H(f |E) = −1

2
D(f),

D(f) =

∫

Y

∫

Y

(aff ′ − bf ′′)(ln(aff ′)− ln(bf ′′)) dydy′,

where we have used the shorthand notation f = f(y) f ′ = f(y′) and f ′′ =
f(y + y′). Note, that the entropy dissipation D(f) vanishes only for detail-
balance equilibria.

3.2 - Saturation phenomena and large-time asymptotics

Detailed balance equilibria of the Becker-Döring can only represent mass up
the saturation mass ρs. It is thus conjectured that in the large-time behaviour

f(t, y)
t→∞−−−→ Ez(y) with

{

z :M1(Ez)) =M1(fin) if M1(fin) ≤ zs,

z = zs if M1(fin) > zs.

This conjecture has been proven for the Becker-Döring model as well as certain
generalisations, and under certain assumptions of strong fragmentation, see e.g.
[3, 52, 8, 9, 14].

In the following we shall illustrate the saturation phenomenon in the Becker-
Döring model by assuming an initial mass ρin = M1(c

in) larger than the satu-
ration mass ρs =M1(Ezs) <∞:

ρin > ρs =M1(Ezs).

According to the conjecture, we expect that ci(t) → Eiz
i
s as t → ∞, while the

remaining mass ρin − ρs should go to larger and larger clusters as t→ ∞.
The following method of proving rigorously the large time behaviour of the

Becker-Döring model was first developed by Penrose [47] and later extended by
Niethammer [43] to coefficients of the type

ai = a1i
α, bi = ai(zs + qi−γ), i ≥ 2,

with α ∈ (0, 1], γ ∈ [0, 1), a1 > 0, zs > 0, q > 0. A first step applies the
time rescaling τ = ε1−α+γt and introduces a cutoff index iε such that iε → ∞
and εiε → 0 as ε → 0. In [3], it was shown that the solution of the above
Becker-Döring model conserves mass M1(t) =M1(0) for all t ≥ 0.

The goal is thus to capture the saturation mass in
∑iε

i=1 ici(τ) ∼ ρs while
the excess mass ρin − ρs is contained in even larger clusters.
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Using mass conservation and the above rescaling, the Becker-Döring model
can be written in the following alternative formulation:

∞
∑

i=1

ici(τ) = ρ,

d

dτ
ci =

1

ε1−α+γ
(Wi−1(c)−Wi(c)) , i ≥ 2,

where

Wi(c) = ai

(

c1 −
bi
ai

)

ci − (bi+1 ci+1 − bi ci)

= a1i
α
(

c1 − zs − qi−γ
)

− (bi+1 ci+1 − bi ci) .

Next, one introduces the following continuum approximation in the study of
the excess mass: For (τ, x) ∈ (0,∞)× ((i − 1/2)ε, (i+ 1/2)ε), we consider

f(τ, x) =
1

ε2
ci(τ), W (τ, x) =

1

ε2
Wi(f(τ)),

and obtain

∂τf = −∂xW (f), W (f)(τ, x) ∼ a1
(

xαu(τ)− qxα−γ
)

,

where u(τ) = ε−γ(c1(τ) − zs). Then, using that c1(τ) → E1 zs and Ei

Ei+1
= zs

E1

for large i, Niethammer [43] showed for a suitable choice of iε (e.g. iε = − ln(ε))
and by applying the continuum approximation for i ≥ iε that in the limit ε→ 0
and iε → ∞ and therefore x ∼ iεε→ 0:

iε
∑

i=1

ici(τ) ∼ ρs,

∫ ∞

0

xf(τ, x) dx = ρ− ρs.

For many general coagulation-fragmentation models, the characterisation of sat-
uration remains an open problem.

4 - Spatially inhomogeneous coagulation-fragmentation models with

diffusion

This Section is devoted to spatially inhomogeneous coagulation-fragmen-
tation models with diffusion, i.e. we study the evolution of a polymer/cluster
density f(t, x, y) ≥ 0 depending on time t ≥ 0, size y ∈ Y = [0,∞) and position
x ∈ Ω ⊂ Rd and subject to

∂tf − d(y)△xf = Qcoag(f, f) +Qfrag(f)

= Q1(f, f)−Q2(f, f) +Q3(f)−Q4(f),(21)

with a size-dependent diffusion coefficients d(y) and diffusion is taking place
within a bounded domain Ω with sufficiently smooth boundary ∂Ω (e.g. ∂Ω ∈
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C2). W.l.o.g. we can assume a normalised volume |Ω| = 1 after rescaling x
accordingly. Together with (21), we assume non-flux homogeneous Neumann
boundary conditions

(22) ∇xf(t, x, y) · ν(x) = 0 on ∂Ω,

and nonnegative initial data

(23) 0 ≤ fin(x, y).

The existence theory of spatially inhomogeneous (or also homogeneous)
coagulation-fragmentation models like eqs. (21)-(23) has applied two basic func-
tional settings: The first is based on fixed-point and compactness methods in
spaces of continuous functions (see e.g. [40, 41, 24, 31, 59]) while the second uses
weak and strong compactness methods in L1(Y ) (see, e.g. [3, 53, 27, 36, 37]).
The latter approach has the advantage of only relying on a physically natural
setting of nonnegative initial data with integrable number and mass densities,
i.e. 0 ≤ fin(y) ∈ L1

1(Y ) = L1(Y, (1 + y)dy) and shall be presented in the
following Section.

4.1 - Existence theory in L1 via weak compactness

Following [36], we shall show in this Section the existence of (global) weak
solutions of continuous coagulation-fragmentation models with diffusion based
on weak compactness methods in L1(Y ).

D e f i n i t i o n 4.1 (Weak solutions of continuous coagulation-fragmentation
models with diffusion).
Let T ∈ (0,∞]. Assume nonnegative initial data with finite mass, i.e. 0 ≤ fin ∈
L1(Ω× R+; (1 + y)dxdy).

Then, a weak solution of the coagulation-fragmentation model (21)-(23) on
[0, T ) is a non-negative function

f ∈ C((0, T );L1(Ω× R+)) ∩ L∞(0, T ;L1(Ω× R+; ydydx))

satisfying f(0) = fin and f ∈ L1((0, T )× (1/R,R);W 1,1(Ω)) for all R ∈ R+.
Moreover, the four gain- and loss terms of coagulation and fragmentation

are integrable in the sense that

Q1,2,3,4 ∈ L1((0, T )× Ω× (0, R)).

Finally, f satisfies the following weak formulation

∫

Ω

∫ ∞

0

(

ψ(t)f(t) − ψ(0)f in
)

dydx+

∫ t

0

∫

Ω

∫ ∞

0

(−f∂tψ + d(y)∇f∇ψ) dydxds

=
1

2

∫ t

0

∫

Ω

∫ ∞

0

Q(f)ψ dydxds, ∀t ∈ (0, T ),

for all compactly supported (in y) test functions ψ ∈ C1([0, T ]× Ω× R+).
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The crucial step of the proof is the following weak stability principle:

P r o p o s i t i o n 4.1 (Stability principle for weak solutions in L1, [36]).
For T ∈ (0,∞) let (fn) be a sequence of weak solutions of the coagulation-
fragmentation model (21)-(23) with sequences of coefficients an → a, bn → b
and dn → d and a common initial data fin. For all n ∈ N let Kw ⊂ L1(Ω×R+)
be a weakly compact set with

fn(t) ∈ Kw, for each t ∈ [0, T ),

and suppose moreover for all R > 0 and i ∈ {1, 2, 3, 4} that

sup
t∈[0,T ]

∫

Ω

∫ ∞

0

fn(t)(1 + y) dydx ≤ CT ,

Qi,n(fn) weakly compact in L1((0, T )× Ω× (0, R)).

Then, there exists a subsequence (fnk
) and a limiting function f such that

fnk
⇀ f in C([0, T );w − L1(Ω× R+)),

Qi,nk
(fnk

)⇀ Qi(f) weakly in L1((0, T )× Ω× (0, R)),

for R ∈ R+, i ∈ {1, 2, 3, 4}.
Thus, f is a weak solution of the coagulation-fragmentation problem (21)-(23)
on [0, T ). Moreover,

∫ ∞

0

ψ(y)fnk
dy →

∫ ∞

0

ψ(y)f dy in L1((0, T )× Ω)

for ψ ∈ D(R+). Finally, the total mass satisfies
∫

ΩM1(t) dx ≤
∫

ΩM1(0) dx.

The above weak stability principle Lemma 4.1 can be proven, for instance,
in a framework of coagulation-fragmentation models satisfying a detailed bal-
ance condition. In the following, we shall discuss how the associated entropy
and entropy-dissipation functionals entail natural a priori estimates, which are
sufficient to prove the weak compactness required by the weak stability principle
Lemma 4.1 for solutions of eq. (21).

We consider a given detailed balance equilibrium E(y) and the associated
relative entropy functional

(24) H(f |E(y)) =

∫

Ω

∫

Y

f
(

ln
( f

E

)

− 1
)

dy,

which dissipates according to the following H-Theorem:

(25)
d

dt
H(f |E) +

∫

Ω

∫

Y

d(y)
|∇f |2
f

dydx

+
1

2

∫

Ω

∫

Y

∫

Y

(aff ′ − bf ′′)(ln(aff ′)− ln(bf ′′)) dydy′dx = 0,
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where we denote f = f(y), f ′ = f(y′), f ′′ = f(y + y′).
Note that the entropy dissipation functional consists of two nonnegative

integral terms, which express the entropy dissipation due to diffusion, the so
called Fisher information, and the entropy dissipation due to coagulation and
fragmentation.

Supposing initial data with finite entropy H(fin|E) ≤ C < ∞, the H-
Theorem (25) implies formally a uniform-in-time bound of the relative entropy

(26) sup
t∈[0,∞)

H(f(t)|E) ≤ H(fin|E) ≤ C <∞.

In return, this implies also that the time-integral of the entropy dissipation
functional is uniformly bounded for any time interval [0, T ]. More precisely, we
have that the time-integrated Fisher information

(27)

∫ T

0

∫

Ω

∫

Y

d(y)
|∇f |2
f

dydxds ≤ C, for all T > 0,

and the time-integrated coagulation-fragmentation part of the entropy dissipa-
tion
(28)
∫ T

0

∫

Ω

∫

Y

∫

Y

(aff ′−bf ′′)(ln(aff ′)−ln(bf ′′)) dydy′dxds ≤ C, for all T > 0,

constitute a natural set of a priori estimates related to the entropy dissipation
for various constants C = C(Ω, E(y), H(f in|E)) depending only on the do-
main Ω, the detailed balance equilibrium E(y) and the initial relative entropy
H(f in|E).

As a second natural a priori estimate, we shall use that the total mass is
bounded uniformly in time if the initial mass

∫

Ω

∫

Y
yfin(x, y) dydx is finite:

(29) C0 = sup
t∈[0,∞)

∫

Ω

∫

Y

yf(t, x, y) dydx ≤
∫

Ω

∫

Y

yfin(x, y) dydx <∞.

In the following, we shall always consider solutions subject to nonnegative initial
data fin (23) with finite mass and entropy.

The below two Lemmas establish additional a priori estimates, which allow
to prove the weak compactness required by Proposition 4.1:

L e m m a 4.1 (see [36] for the proof).
Let ξ 7→ {0, 1} be measurable on R+ × Ω× R+ and α ≥ e2. Then, for t ≥ 0

∫

Ω

∫

Y

ξ(t)f(t) dydx ≤ 2(α+ e−1)

∫

Ω

∫

Y

ξ(t)E dydx+
2

ln(α)
H(f(t)|E).

L e m m a 4.2.
For t ∈ R+ holds with f(t)

∣

∣ln f(t)
E(y)

∣

∣ ≤ f(t) ln f(t)
E(y) +

2E
e ,

(30)

∫

Ω

∫

Y

f(t)

(

1 +

∣

∣

∣

∣

ln

(

f(t)

E(y)

)∣

∣

∣

∣

)

dydx ≤ C.
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P r o o f. From Lemma 4.1 follows with ξ(t) = 1 that

∫

Ω

∫

Y

f(t) dydx ≤ C|Ω|‖E‖1 + C ≤ C,

for a constant C = C(Ω, E(y), H(f in|E), C0). �

Before proving the weak compactness Lemma 4.4 required for the weak sta-
bility principle in Proposition 4.1, we recall the Dunford-Pettis theorem on weak
compactness in L1:

L e m m a 4.3 (Dunford-Pettis theorem).
A sequence (fn) is contained in a weakly compact subset Kw ⊂ L1(Ω × R+) if
(fn) is bounded in L1(Ω× R+) and satisfies.

lim
R→∞

sup
n≥1

∫

{fn≥R}
fn(x, y) dxdy = 0,

and if for all ε > 0, there exists a measurable S ⊂ Ω × R+ with |S| < ∞ such
that

sup
n≥1

∫

(Ω×R+)\S
|fn| ≤ ε.

L e m m a 4.4 (Weak compactness lemma, [36]).
Let T ∈ R+ and let (fn) ≥ 0 be a sequence such that for all n ≥ 1

sup
t∈[0,T ]

∫

Ω

∫

Y

fn(t)

(

1 + y +

∣

∣

∣

∣

ln

(

fn(t)

E(y)

)
∣

∣

∣

∣

)

dydx ≤ CT ,(31)

∫ T

0

∫

Ω

∫

Y

∫

Y

(anfnf
′
n−bnf ′′

n )(ln(anfnf
′
n)−ln(bnf

′′
n ))dydy

′dxds < CT ,(32)

with constants CT = C(T,Ω, E(y), H(f in|E), C0) not depending on n.

Then, the sequence (fn) is weakly compact in L1((0, T ) × Ω × R+) and the
sequences (Qi(fn)) are weakly compact in L1((0, T )×Ω×(0, R)) for i ∈ 1, 2, 3, 4
and R ∈ R+.

Moreover, there exists a weakly compact subset Kw ⊂ L1(Ω× R+) such that
(fn(t)) ∈ Kw for all t ∈ [0, T ] and n ≥ 1.

P r o o f. [Sketch of the proof]
At first, for S ⊂ Ω× R+ measurable, |S| < ∞ and α ≥ e2, it follows from (31)
and Lemma 4.1 that

(33)

∫

S

fn(t) dydx ≤ 4α

∫

S

E(y) dydx+
2CT

ln(α)
≤ CT (E, |Ω|, α).

Eq. (31) implies moreover that

(34)

∫

Ω

∫ ∞

α

fn(t) dydx ≤ CT

α
.

22



Thus, fn(t) ∈ Kw ⊂ L1(Ω× R+) for all n ≥ 1 with Kw defined in the way that
g ∈ Kw satisfies the above equations (33) and (34) for all measurable S ⊂ Ω×R+

with |S| < ∞ and α ≥ e2. Moreover, since E(y) ∈ L1(0,∞) and |Ω| = 1, the
Dunford-Pettis theorem shows that Kw is weakly compact.

In the following, we sketch how to show the integrability of the coagulation
and fragmentation integral Q1,n, Q2,n, Q3,n and Q4,n (see [36] for the details).

First, for all R ∈ R+

Q4,n(fn) =
fn(t, x, y)

2

∫ y

0

bn(y
′, y − y′) dy′ ≤ R‖bn‖∞fn.

Therefore, the sequence (Q4,n(fn)) (where Q4,n may be an approximation of Q4

with coefficients an → a, bn → b and dn → d) is weakly compact in L1((0, T )×
Ω×(0, R)) since (fn) is weakly compact and ‖bn‖∞ is assumed bounded.

Secondly, we observe that for all α ≥ e2, the elementary inequality η ≤
αξ+ (η−ξ) ln(η/ξ)

ln(α) for (η, ξ) ∈ R2
+ yields for measurable S⊂(0, T )×Ω×(0, R)

∫

S

an(y
′, y − y′)fn(y

′)fn(y − y′) dydxdt ≤ α sup
n≥1

∫

S

Q4(fn) dydxdt+
CT

ln(α)
.

Letting then α → ∞ shows that the sequence (Q1,n(fn)) is weakly compact in
L1((0, T )×Ω×(0, R)) for all R ∈ R+.

In a third step, we have for all α ≥ 2R ∈ R+

∫

S

Q3,n(fn) dydxdt ≤
∫

S

∫ α

0

bn(y, y − y′)fn(y
′) dy′dydxdt

+ ‖bn‖L∞(a−R,∞)

∫

S

∫ ∞

α

fn(y
′) dy′dydxdt

≤ C

∫

S

∫ α

0

fn(y
′) dy′dxdt+ ‖bn‖L∞(a−R,∞)C(T,R),

and the sequence (Q3n(fn)) is weakly compact in L1((0, T )×Ω×(0, R)) since
(fn) is weakly compact.

Finally, because of

∫ T

0

∫

Ω

∫

Y

∫

Y

(anfnf
′
n − bnf

′′
n ) ln

(

anfnf
′
n

bnf ′′
n

)

dydy′dxds < CT ,

it follows also that (Q2,n(fn)) is weakly compact in L1((0, T )×Ω×(0, R)) from
the weak compactness of (Q3,n(fn)) in a similar argument as above showing the
weak compactness of (Q1,n(fn)). �

The existence of weak solutions in L1 to discrete inhomogeneous coagulation-
fragmentation models with diffusion can be shown in a similar way to above,
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see [37]. More precisely, we consider for c = (ci), i ∈ N the system

(35)
d

dt
ci − di△xci = Qcoag(c, c) +Qfrag(c)

=
1

2

i−1
∑

j=1

ai−j,j ci−jcj −
∞
∑

j=1

ai,j cicj +

∞
∑

j=1

Bi+jβi+j,i ci+j −Bici,

together with homogeneous Neumann boundary conditions

(36) ∇xci(t, x) · ν(x) = 0 on ∂Ω, i ∈ N,
and nonnegative initial data

(37) cini (x, y) ≥ 0, i ∈ N.
In eq. (35), the (di) denote a sequence of size-dependent diffusion coefficients
and diffusion is taking place within a smoothly bounded (e.g. ∂Ω ∈ C2) domain
Ω with normalised volume |Ω| = 1.

Weak (global) solutions of the discrete coagulation-fragmentationmodel with
diffusion (35)-(37) are define as follows:

D e f i n i t i o n 4.2 (Weak solutions of discrete inhomogeneous coagula-
tion-fragmentation model with diffusion).
Let T ∈ (0,∞] and suppose initial data 0 ≤ cini ∈ L1(Ω) with finite total mass
∑∞

i=1 i‖cini ‖1 <∞.
Then, a weak solution of (35)-(37) on [0, T ) is a non-negative function

ci ∈ C([0, T );L1(Ω)), sup
t∈[0,T )

∞
∑

i=1

i‖ci‖1 < C(cini ), i ∈ N,
with Q1,2,3,4(c) ∈ L1((0, T )× Ω). Moreover, ci are mild solutions of

ci(t) = edi△xtcini +

∫ t

0

edi△x(t−s)(Qcoag +Qfrag)(c(s)) ds, i ∈ N,
and edi△xt is the C0-semigroup of di△x in L1(Ω) with homogeneous Neumann
boundary conditions.

R e m a r k 4.1. We remark that weak L1-solutions require in particular
the quadratic, infinite sum of the loss term of coagulation to be integrable, i.e.
Q2(c) =

∑∞
j=1 ai,jcicj ∈ L1((0, T )× Ω).

P r o p o s i t i o n 4.2 (Global weak solutions, [37]).
Assume that the coefficients of (35) satisfy

(38) lim
j→∞

ai,j
j

= lim
j→∞

Bi+j βi+j,i

i+ j
= 0, (for fixed i ≥ 1),
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Then, there exists a global weak solutions ci ∈ C([0, T ];L1(Ω)), i ∈ N for all
T > 0 satisfying in particular that the total mass is non-increasing

sup
t≥0

∫

Ω

[ ∞
∑

i=1

ici(t, x)

]

dx ≤
∫

Ω

[ ∞
∑

i=1

ic0i (x)

]

dx,

and that the loss term of the coagulation Q2(c) is integrable

∞
∑

j=1

ai,jcicj ∈ L1([0, T ]× Ω).

4.2 - Duality method and global L2-estimate

At the price of less general initial data with ρin ∈ L2(Ω), a theory of existence
and absence of gelation for discrete inhomogeneous coagulation-fragmentation
models with diffusion was presented in [5] and extended to degenerate diffusion
coefficients in [6].

The key lemma applies a duality method (see e.g. [33, 48, 18] and also [7]
for a recent improvement) to establish a global-in-time L2(Ω)-estimate, which
can also be generalised to degenerate diffusion coefficients, see [5, 6, 18]:

L e m m a 4.5 (Global L2(Ω)-estimates via duality, see [5, 6]).
Assume coagulation-fragmentation coefficients satisfying (38) and suppose ini-
tial data with ρin(x) =

∑∞
i=1 ic

in
i (x) ∈ L2(Ω).

Then, for all T > 0

(39) ‖ρ‖L2(ΩT ) ≤
(

1 +
supi{di}
infi{di}

)

T ‖ρin‖L2(Ω),

or for degenerate diffusion (i.e. infi{di} = 0)

(40)

∫ T

0

∫

Ω

[ ∞
∑

i=1

i di ci(t, x)

][ ∞
∑

i=1

i ci(t, x)

]

≤ 4T sup
i∈N{di}‖ρin‖L2(Ω).

P r o o f. [Proof of duality bounds]
By denoting A(t, x) = 1

ρ

∑∞
i=1 i di ci, it follows that ‖A‖∞ ≤ supi∈N{di} and

that
∂tρ−∆x(Aρ) = 0.

Then, multiplication with the nonnegative solution w(t, x) of the dual problem:

−(∂tw +A∆xw) = H
√
A,

∇xw · ν(x)|∂Ω = 0(41)

w(T, ·) = 0
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for any smooth function H = H(t, x) ≥ 0 leads to

(42)

∫ T

0

∫

Ω

H(t, x)
√

A(t, x) ρ(t, x) dxdt =

∫

Ω

w(0, x) ρ(0, x) dx.

Next, testing the dual problem (41) with −∆xw (this can be made rigorous by a
standard approximation procedure of solutions of parabolic problems, see [18]),
we estimate

−
∫ T

0

∫

Ω

∂t(|∇w|2/2) dxdt+
∫ T

0

∫

Ω

A (∆xw)
2 dxdt ≤

∫ T

0

∫

Ω

H
√
A(−∆xw)dxdt

≤ C

ε

∫ T

0

∫

Ω

H2 dxdt+ ε

∫ T

0

∫

Ω

A(∆xw)
2dxdt.

and obtain with ∇w(T ) = 0 that

∫ T

0

∫

Ω

A (∆xw)
2 dxdt ≤

∫ T

0

∫

Ω

H2 dxdt.

Therefore, in a second step, one can show that

∫ T

0

∫

Ω

|∂tw|2
A

dxdt ≤ 4

∫ T

0

∫

Ω

H2 dxdt,

and hence, with |w(0, x)|2 ≤
( ∫ T

0

√
A |∂tw|√

A
dt
)2

that

∫

Ω

|w(0, x)|2 dx ≤ 4T ‖A‖L∞(Ω)

∫ T

0

∫

Ω

H2 dxdt.

Returning to eq. (42) above, we continue to estimate

∫ T

0

∫

Ω

H
√
Aρdxdt ≤ ‖ρ(0, ·)‖L2(Ω) ‖w(0, ·)‖L2(Ω)

≤ 2
√

T ‖A‖L∞(Ω) ‖H‖L2([0,T ]×Ω) ‖ρ(0, ·)‖L2(Ω).

for all nonnegative smooth functions H . Thus, by duality, we conclude that

‖
√
Aρ‖L2(Ω) ≤ 2

√

T ‖A‖L∞(Ω) ‖ρ(0, ·)‖L2(Ω),

which shows (40) and concludes the proof in case of degenerate diffusion co-
efficients. Finally, for bounded diffusion coefficients with infi{di} > 0, the
L2-bound (40) follows directly from (39). �
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4.3 - Global weak L2-solutions via duality method

The above duality Lemma 4.5 provides a uniform-in-time L2(Ω)-bound with-
out assumptions on the coagulation-fragmentation coefficients, in particular
without any restriction on the growth of the coagulation coefficients ai,j which
are responsible for gelation.

However, the construction of solutions of (35)-(37) requires a limit of suitable
approximating solutions and in order to pass to the limit (similar to Section 2.3),
we shall need the assumptions (38) as in the L1 theory, i.e. as in Proposition
4.2 above. More precisely, for solutions cNi of approximating truncated systems,
we need to pass to the limit in the lost term of coagulation

QN
2 = cNi

∑∞

j=1
ai,j c

N
j .

Indeed, since cNi converges to ci weak-∗ in L∞((0, T )× Ω), we require that

∞
∑

j=1

ai,j c
N
j →

∞
∑

j=1

ai,j cj strongly in L1((0, T )× Ω),

which can be shown under the assumption lim
j→∞

ai,j

j = 0 by the following esti-

mate
∫ T

0

∫

Ω

∣

∣

∣

∣

∑

j

ai,j(c
N
j − cj)

∣

∣

∣

∣

dxdt ≤ 2 sup
j≥J0

∣

∣

∣

∣

ai,j
j

∣

∣

∣

∣

‖ρ‖L2 + sup
j≤J0

‖cNj − cj‖L1 .

It is thus interesting to remark that the existence theory of the discrete
coagulation-fragmentation model with diffusion (35)-(37) does not really benefit
from having a global L2-bound via the duality Lemma 4.5 in comparison to the
L1 theory developed in [36].

However, the L2 approach succeeds in proving solutions for generalised
coagulation-fragmentation models with quadratic fragmentation, for which the
L1 compactness theory can no longer be applied to, see [5]:

T h e o r e m 4.1 (Existence theory for generalised quadratic models, [5]).
Consider the generalised quadratic coagulation-fragmentation model

∂tci − di∆xci =
1

2

∑

k+l=i

ak,l ck cl −
∞
∑

k=1

ai,k ci ck

+
1

2

∞
∑

k,l=1

∑

i<max{k,l}
bk,l ck cl βi,k,l −

∞
∑

k=1

bi,k ci ck.

Then, global weak L1-solutions exist in 1D provided that

lim
l→∞

ak,l
l

= 0, lim
l→∞

bk,l
l

= 0, lim
l→∞

sup
k

{

bk,l
kl

βi,k,l

}

= 0 k, i ∈ N.
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4.4 - Absence of gelation

The following Theorem shows how the duality estimate 4.5 allows to prove
absence of gelation. Provided bounded diffusion coefficients, this is done un-
der almost as general assumptions on the coagulation coefficients as for space
homogeneous models, see e.g. [2].

T h e o r e m 4.2 (Absence of gelation, [5, 6]).
Assume an initial mass ρin(x) ∈ L2(Ω). Moreover, in the case of bounded
diffusion coefficients

0 < inf
i∈N{di} ≤ di ≤ sup

i∈N{di} <∞,

assume that there exists a bounded function θ : [0,+∞) → (0,+∞) satisfying
θ(x) → 0 as x→ ∞ such that

(43) ai,j ≤ (i+ j) θ(max{j/i, i/j}) for all i, j ≥ 1.

On the other hand, in the case of the degenerate diffusion coefficients

0 = inf
i∈N{di}, Ci−γ ≤ di <∞,

for an exponent γ ∈ [0, 1] and a constant C, assume that

(44) ai,j ≤ C(iαjβ + iβjα) for all i, j ≥ 1,

with α+ β + γ ≤ 1, α, β ∈ [0, 1) and a constant C.

Then, the weak solutions to the system (35)-(37) with coefficients (38) given
by Proposition 4.2 and satisfying the global bounds of Lemma 4.5 have a bounded
superlinear moment on bounded time intervals [0, T ] for all T > 0, i.e. there
exists an increasing function C = C(T ) > 0 and an increasing sequence of
positive numbers {ψi}i≥1 with limi→∞ ψi → ∞ such that for all T > 0,

(45)

∫

Ω

∞
∑

i=1

i ψici ≤ C(T ) for all t ∈ [0, T ].

As a consequence, the total mass is conserved
∫

Ω

ρ(t, x) dx =

∫

Ω

ρin(x) dx for all t ≥ 0.

P r o o f. [Idea of the proof in a simplified case]
We sketch the proof considering the special case of the sublinear kernel ai,j =√
ij and by neglecting fragmentation Bi = 0 (w.l.o.g. since fragmentation coun-

teracts gelation) and by assuming bounded diffusion coefficients. Moreover, to
further simplify the argument, we shall assume initial data with a bounded
first-logarithmic moment,

∫

Ω

∞
∑

i=0

i ln i cini (x) dx <∞.
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For general initial data with bounded initial mass, one can construct a suitable
superlinear initial moment using the De la Vallée-Poussin’s lemma, see [10].

At first, we test the weak formulation with ϕi = ln i and use ln(1+x) ≤ C
√
x

to estimate

d

dt

∫

Ω

∞
∑

i=1

i ln i ci dx =

∫

Ω

∞
∑

i=1

∞
∑

j=1

√

ij ci cj

(

i ln(1 +
j

i
) + j ln(1 +

i

j
)

)

dx

≤ 2

∫

Ω

∞
∑

i=1

∞
∑

j=1

i j ci cj dx ≤ 2

∫

Ω

ρ(t, x)2 dx.

As a consequence, we have for all T > 0

∫

Ω

∞
∑

i=0

i ln i ci(T, x) dx ≤
∫

Ω

∞
∑

i=0

i ln i ci(0, x) dx + 2

∫ T

0

∫

Ω

ρ(t, x)2 dxdt.

Then, the global L2-bounds of Lemma 4.5 ensure the propagation of the loga-
rithmic moment

∫
∑∞

i=0 i ln i ci(·, x)dx and, thus, the mass conservation. �

4.5 - Entropy method and convergence to equilibrium

In this Section, we prove explicit convergence to equilibrium for a continuous,
spatially inhomogeneous coagulation-fragmentation model with diffusion and
normalised coefficients.

The key lemma establishes a so called entropy entropy-dissipation estimate,
an explicit bound of the relative entropy with respect to the global equilibrium
in terms of the ongoing entropy dissipation.

This so called entropy method applies to evolutionary problems, which fea-
ture a monotone (e.g. nonincreasing) entropy functional E with an extremal
(e.g. minimising) entropy E∞, for which the entropy dissipates according to an
entropy dissipation functional D, i.e.

(46)
d

dt
E =

d

dt
(E − E∞) = −D ≤ 0.

Moreover, the entropy dissipation functional is supposed to be non-degenerate
in the sense that the global equilibrium can be uniquely identified for the set
of states with zero entropy dissipation D = 0 by taking into account all the
conservation laws of the system.

An entropy entropy-dissipation estimate is then a functional inequality of
the form

(47) D ≥ Φ(E − E∞), Φ(0) = 0, Φ ≥ 0,

and a Gronwall lemma implies directly from the eqs. (46) and (47) the con-
vergence to equilibrium in relative entropy. If Φ′(0) > 0, then the obtained
convergence is exponential.
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The entropy method quantifies the large-time behaviour in terms of func-
tional inequalities, which as such are not connected to the evolutionary problem.
Thus, one advantage of the entropy method is a robustness in the sense that
these functional entropy entropy-dissipation estimates may be reapplied in mod-
ified models. In fact, we shall give an example in the proof of Lemma 4.6 below.

Moreover, the entropy method avoids linearisation and/or compactness ar-
guments and therefore yields global convergence with constants and rates, which
can (in principle) be calculated explicitly.

Going back to ideas of Boltzmann and Grad, the entropy method has been
successfully used in many situations ranging from (non)linear diffusion equations
(see e.g. [13]), integral equations (such as the spatially homogeneous Boltzmann
equation [55, 56, 57]), over reaction-diffusion systems (see e.g. [15, 16, 17, 18])
to kinetic equations (see e.g. [20, 21], [29], [4]). The entropy method has also
been applied to spatially homogeneous coagulation-fragmentation problem in
[1] and [34].

Note, that convergence to equilibrium in the relative logarithmic Boltzmann
entropy implies convergence in L1 due to Cziszár-Kullback-Pinsker type inequal-
ities.

In the following, we prove (faster-than-polynomial/exponential) convergence
to equilibrium via the entropy method for a continuous, spatial inhomogeneous
coagulation-fragmentation with diffusion and normalised coagulation-fragmen-
tation coefficients. Generalising the homogeneous model discussed in [1], we
consider a continuous-in-size cluster density f(t, x, y) depending on time t ≥
0, position x ∈ Ω and size y ∈ [0,∞) satisfying the following coagulation-
fragmentation model with normalised coefficients (e.g. a(y, y′) = 2)

∂tf − d(y)△xf = Q(f, f) =

∫ y

0

f(y − y′) f(y′)dy′ − 2f(y)

∫ ∞

0

f(y′) dy′

+ 2

∫ ∞

y

f(y′) dy′ − y f(y),(48)

together with homogeneous Neumann boundary condition

∇xf · ν = 0, x ∈ ∂Ω,

and nonnegative initial data 0 ≤ f in(x, y).

The size-dependent diffusion coefficient d(y) is assumed bounded on intervals
[δ, δ−1] for all δ > 0, but may degenerate at most linearly for large sizes:

(49) d(y) ≤ d∗(δ), ∀y ∈ [δ, δ−1], 0 <
d∗

1 + y
≤ d(y), ∀y ∈ [0,∞).

The weak formulation of the coagulation-fragmentation operator Q for a
smooth test-function ϕ = ϕ(y) and a function f = f(y) (such that the integrals
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exist) reads (with y′′ = y + y′) as
∫ ∞

0

Q(f, f)(y)ϕ(y) dy =

∫ ∞

0

∫ ∞

0

[ϕ(y′′)− ϕ(y)− ϕ(y′)] f(y)f(y′) dy dy′

+ 2

∫ ∞

0

Φ(y) f(y) dy −
∫ ∞

0

y ϕ(y) f(y) dy,(50)

where the function Φ denotes the primitive of ϕ (∂yΦ = ϕ) with Φ(0) = 0.
Then, by denoting the first and the zero moments

N =

∫ ∞

0

y′f(y′) dy′, M =

∫ ∞

0

f(y′) dy′,

the mass density N(t, x) and the number densityM(t, x), the evolutionary prob-
lem eq. (48) conserves formally the total mass

∂tN −△x

(
∫ ∞

0

d(y′) y′ f(y′) dy′
)

= 0,

while the number density satisfies

∂tM −△x

(
∫ ∞

0

d(y′) f(y′) dy′
)

= N −M2.

Next, by testing the weak formulation with ln(f), the entropy (free energy)
functional

H(f)(t, x) =

∫ ∞

0

(f ln f − f) dy,

dissipates according to

d

dt

∫

Ω

H(f) dx = −DH(f) ≤ 0,

DH(f) =

∫

Ω

∫ ∞

0

d(y)
|∇xf |2
f

dy dx

+

∫

Ω

∫ ∞

0

∫ ∞

0

(f ′′ − ff ′) ln

(

f ′′

ff ′

)

dy dy′dx ≥ 0,

where f = f(y), f ′ = f(y′) and f ′′ = f(y + y′).
For the spatially homogeneous model (48), Aizenman and Bak [1] found the

following remarkable inequality

(51)

∫ ∞

0

∫ ∞

0

(f ′′ − ff ′) ln

(

f ′′

ff ′

)

dy dy′ ≥M H(f |fN ) + 2(M −
√
N)2,

where H(f |fN) = H(f)−H(fN ) denotes the relative entropy with respect to a
local/intermediate detailed-balance equilibria of the coagulation-fragmentation
process:

(52) fN(t, x) = e
− 1√

N(t,x)
y
,
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which depends on space and time only through the macroscopic moment N(t, x)
and satisfies the relation M =

√
N .

The inequality (51) implies the following lower bound of the entropy dissi-
pation

(53) DH(f) ≥ D1(f) =

∫

Ω

∫ ∞

0

d(y)
|∇xf |2
f

dy dx+M H(f |fN)+2(M−
√
N)2.

Eq. (53) shows that the entropy dissipation sums the two effects of diffusion
and coagulation-fragmentation. The process of coagulation and fragmentation is
only able to push the particle density f(t, x, y) towards the class of intermediate
equilibria (52) and it is a consequence of spatial diffusion and the homogeneous
Neumann boundary conditions on the bounded domain Ω to select from the
class of intermediate equilibria fN the unique global equilibrium parametrised
by the conserved total initial mass:

f∞ = e
− y√

N∞ , N∞ =

∫

Ω

N(x) dx =

∫

Ω

∫ ∞

0

y f in(x, y) dydx.

The existence of global weak mass-conserving solutions to eq. (48) with a
diffusion constant d(y) ∈ L∞([1/R,R]) for all R > 0 has been established in
[36]. These solutions satisfy the entropy dissipation inequality

∫

Ω

H(f(t)) dx+

∫ t

0

DH(f(s)) ds ≤
∫

Ω

H(f0) dx.

Using the entropy method, the following convergence to equilibrium was ob-
tained in [19] in the one-dimensional case Ω = [0, 1] by generalising a first result
of exponential convergence assuming (not very physically) bounded diffusion
coefficients [10]:

T h e o r e m 4.3 (Faster-than-polynomial convergence to equilibrium).
Suppose nonnegative initial data (1 + y + ln f0)f0 ∈ L1((0, 1) × (0,∞)) with

positive initial mass
∫ 1

0 N0(x) dx = N∞ > 0 on Ω = (0, 1). Assume at most
linearly degenerating diffusion coefficients (49).

Then, for a constant β < 2 and t > 0

(54) ‖f(t, ·, ·)− f∞‖L1
x,y

≤ Cβ e
−(ln t)β ,

and for all t ≥ t∗ > 0, and q > 0,

∫ ∞

0

(1 + y)q ‖f(t, ·, y)− f∞(y)‖L∞
x
dy ≤ Cβ,q e

−(ln t)β .

The proof is based on the following entropy entropy-dissipation estimate:

L e m m a 4.6 (Entropy Entropy-Dissipation Estimate).
Assume that 0 ≤ f = f(x, y) is measurable and satisfies the following moment
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estimates:

0 <M∗ ≤M(x) =

∫ ∞

0

f(x, y) dy ≤ ‖M‖L∞
x
,(55)

0 < N∞ =

∫

Ω

∫ ∞

0

y f(x, y) dydx,(56)

∫

Ω

∫ ∞

0

y2pf(x, y) dxdy ≤ M2p.(57)

Then, for all A ≥ 1 and p > 1 the following entropy entropy-dissipation
estimate holds:

D1(f) ≥
C

A ‖M‖L∞
x

∫

Ω

H(f |f∞) dx − C
M2p

A2p+1
,(58)

with a constant C = C(M∗, N∞, d∗, P (Ω)) depending only on M∗, N∞, d∗, and
the Poincaré constant P (Ω) of the domain Ω.

P r o o f. [Sketch of the proof of Lemma 4.6]
We remark that with the definition of the relative entropy H(f |g) = H(f) −
H(g), the following additivity property between global and local equilibria holds

(59) H(f |f∞) = H(f |fN) +H(fN |f∞),

where the space integral of the relative entropy between fN and f∞ is non-
negative:

∫

Ω

H(fN |f∞) dx = 2

(
√

∫

Ω

N dx−
∫

Ω

√
N dx

)

≥ 0,

despite fN and f∞ not necessarily having the same L1
y-norm.

Thus, in a first step we begin with the additivity properties (59) of the
relative entropy:

∫ 1

0

H(f |f∞) dx =

∫ 1

0

H(f |fN) dx + 2
(√

N −
√
N
)

,(60)

where we have introduced the shorthand notation N =
∫

ΩN dx and M =
∫

ΩM dx.

Secondly, we estimate the second term of the above equality by applying a
functional inequality, which was derived in [16] as part of an entropy entropy-
dissipation estimate for a reaction-diffusion system of two reacting speciesM ↔√
N with degenerate diffusion. This functional inequality quantifies that diffu-

sive effects are passed from one species onto another species via the ongoing
reversible reaction between these two species. In the present context, it reads
as the functional inequality

√

N −
√
N ≤ 2√

N∞

[

‖M −
√
N‖2L2

x
+ ‖M −M‖2L2

x

]

,
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and formulates a control of a nonnegative measure for the spatial inhomogeneity
of the moment N in terms of an L2-measure for the reaction of M ↔

√
N and

an L2-measure for the spatial inhomogeneity of the moment M .
Assuming moreover a lower bound of the moment M(t, x) > M∗ > 0, we

continue to estimate (60) as follows

∫ 1

0

H(f |f∞) dx ≤ C

[
∫ 1

0

MH(f |fN)dx+ 2‖M −
√
N‖2L2

x

]

+
4‖M −M‖2L2

x√
N∞

≤ C

∫ 1

0

∫ ∞

0

∫ ∞

0

(f ′′ − ff ′) ln

(

f ′′

ff ′

)

dy dy′ dx+
4‖M −M‖2L2

x√
N∞

,(61)

where we have applied the Aizenman-Bak inequality (51).

In a third step, we estimate the L2-measure for the spatial inhomogeneity
of the moment M , i.e. ‖M −M‖2L2

x
in terms of the Fisher information term

of (53). This can be done by assuming higher order moments of f(·, y) and a
cutoff A > 0 in the size-variable y to bypass the degenerate diffusion coefficients
d(y) for large clusters. By denoting

MA(t, x) :=

∫ A

0

f(t, x, y) dy, M c
A(t, x) :=

∫ ∞

A

f(t, x, y) dy,

we estimate for any p > 1

‖M −M‖2L2
x
=

∫

Ω

(

MA −MA +M c
A −M c

A

)2
dx

≤ 2‖MA −MA‖2L2
x
+

4

A2p

∫

Ω

(
∫ ∞

0

ypf(y) dy

)2

dx

≤ C(P, d∗)A ‖M‖L∞
x

∫

Ω

∫ ∞

0

d(y)
|∇xf |2
f

dydx+
4

A2p
‖M‖L∞

x
M2p,

where we have assumed an L∞-bound ‖M‖L∞
x
and that the total number density

is uniformly bound in time, i.e. ‖M‖L∞
t (L1

x)
<∞. �

R e m a r k 4.2. We remark that the entropy entropy-dissipation estimate
of Lemma 4.6 holds in any space dimensions provided the necessary a-priori

moment bounds hold. These moment bounds however, can so far be only proven
in the one-dimensional case.

The following lemma proves in the one-dimensional case a priori estimates,
which are required for applying the entropy entropy-dissipation estimate:

L e m m a 4.7 (A priori Estimates).
Assume Ω = [0, 1].

Then, the number density M(t, x) satisfies a (L1 ∩ L2) + L∞ bound, i.e.

‖M(t, ·)‖L∞
x

≤ m∞ +m2(t),
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with a constant m∞ and a L1 ∩ L2(0,∞)-function m2(t). Moreover, we have

∫ 1

0

M(t, x) dx ≥ M0∗ > 0.

P r o o f. [Proof of Lemma 4.7]
Considering f(t, x, y)− f(t, x̃, y) = 2

∫ x

x̃

√
f(t, ξ, y) ∂x

√
f(t, ξ, y) dξ, we integrate

first in x̃ and then in y and estimate

∫ ∞

0

∣

∣

∣

∣

f(t, x, y)−
∫ 1

0

f(t, x̃, y) dx̃

∣

∣

∣

∣

dy

≤ 2

[
∫ ∞

0

∫ 1

0

f(t, x, y)

d(y)
dxdy

]

1
2
[
∫ ∞

0

∫ 1

0

d(y)|∂x
√

f(t, x, y)|2dxdy
]

1
2

,

which implies

M(t, x) ≤
∫ 1

0

M(t, x̃) dx̃+ d
−1/2
∗ (M∗

0 +N∞)1/2D(f(t))1/2.

and thus the first statement of Lemma 4.7.
Next, we estimate for m2(t) ∈ L1 ∩ L2(0,∞)

d

dt

∫ 1

0

M(t, x) dx =

∫ 1

0

(N −M2) dx

≥
∫ 1

0

Nin(x) dx − (m∞ +m2(t))

∫ 1

0

M(t, x) dx,

and thus
∫ 1

0

M(t, x) dx ≥
∫ 1

0

Min(x) dx e
−

∫
t

0
(m∞+m2(σ)) dσ

+

∫ 1

0

Nin(x) dx

∫ t

0

e−
∫

t

s
(m∞+m2(σ)) dσ ds

≥ e−
∫ ∞
0

m2(σ) dσ

[

e−m∞ t‖Min‖L1
x
+

1− e−m∞ t

m∞
‖Nin‖L1

x

]

.

�

The next Lemma establishes higher order moments of the solution of (48):

L e m m a 4.8 (Higher moment estimates).
We denote

Mp(f)(t) =

∫ 1

0

∫ ∞

0

yp f dy dx.

Then, the solutions of (48) satisfy for p > 1 and for a.a. t ≥ t∗ > 0

Mp(f)(t) ≤ (22p C)p = M∗
p,

with a constant C = C(t∗, fin) depending only on the initial data fin and t∗ > 0.
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P r o o f. [Sketch of the proof of Lemma 4.8, [19]]
The proof exploits that the fragmentation process of (48) produces moments.
Testing the weak formulation with yp with p > 1, we obtain

d

dt
Mp(f)(t) ≤ (2p − 2)Mp(f)(t) [m∞ +m2(t)]−

p− 1

p+ 1
Mp+1(f)(t).

Thus, the interpolation

−p− 1

p+ 1
Mp+1(f) ≤

ǫ−p

p+ 1
N∞ − p

p+ 1
ǫ−1Mp(f),

for ǫ > 0 and Duhamel’s formula with the estimate
∫ t

t∗
m2 ds ≤ µ2

√
t− t∗ (ex-

ploiting m2 ∈ L2(0,∞)) allows to show that the moment Mp+1 is bounded
for positive times t ≥ t∗ > 0 if the moment Mp is bounded for positive times
t ≥ t∗ > 0. For initial data with bounded first order moment (1 + y)fin ∈ L1,
we apply then the de la Vallée-Poussin Lemma: for any f ∈ L1 exists ϕ ր ∞
such that ϕf ∈ L1, see [19] for the details.

Then, for a regularised version of ϕ(y), we calculate the evolution of the
y ϕ(y)-moment and estimate y ϕ(y)Qfrag ≤ −C1y

1+δ, which leads to a bound
of a moment Mp with p > 1 for positive times t ≥ t∗ > 0. �

L e m m a 4.9 (Positive lower bound on number density M(t, x)).
Let t∗ > 0 be given.

Then, there is a strictly positive constant M∗ (depending on t∗, d∗ and d∗(δ))
such that

M(t, x) ≥ M∗ > 0.

P r o o f. [Sketch of the proof]
By introducing a linear lower bound for the lost terms, we consider the equality

∂tf − d(y) ∂xxf = g1 − y f − ‖M(t, ·)‖L∞
x
f,

where g1(t, x) is nonnegative. Therefore,

(∂t + d(y) ∂xx)
(

f ety+
∫

t

0
‖M(s,·)‖L∞

x
ds
)

= g2,

where g2 is nonnegative.
Next, we apply Fourier series and Poisson’s formula to the solution of ∂th−

d ∂xxh = G ∈ L1 with homogeneous Neumann boundaries on (0, 1) and obtain

h(t, x) =
1

2
√
π

∫ 1

−1

h̃(0, z)

∞
∑

k=−∞

1√
d t

e−
(2k+x−z)2

4d t dz

+
1

2
√
π

∫ t

0

∫ 1

−1

G̃(s, z)

∞
∑

k=−∞

1
√

d (t− s)
e−

(2k+x−z)2

4d (t−s) dzds,
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where h̃ and G̃ are mirrored evenly around x = 0.
Then, for t1 ≥ 0 and t ∈ [t∗, 2t∗] for some t∗ > 0, we estimate

f(t1 + t, x, y) ≥ C

∫ 1

0

f(t1, z, y) e
−(2t∗+

1
d∗ t∗

) y dz,

and further

M(t1 + t, x) ≥ C e−(2t∗+
1

d∗ t∗
) 1
δ

∫ 1

0

∫ 1/δ

δ

f(t1, z, y) dydz

≥ C e−(2t∗+
1

d∗ t∗
) 1
δ

(

M0∗ − δ N∞ −K δ −
∫ 1

0 H(f) dx

lnK

)

,

where we have used that
∫∞

1
δ

f(y) dy ≤ δN and
∫ δ

0
f(y) dy ≤ K δ +

∫ δ

0
f ln f

lnK dx.

Choosing δ and K, we get that M(t1 + t, x) ≥ M∗ and the statement follows
since M∗ = M∗(d∗, d∗,m∞, µ,H(fin), t∗) does not depend on t1. �

P r o o f. [Proof of Theorem 4.3]
We first prove the convergence to equilibrium (54) assuming that the entropy
entropy-dissipation Lemma 4.6 can be applied. In fact, provided Lemma 4.6,
we estimate that for any A > 1

d

dt

∫ 1

0

H(f |f∞) dx ≤ − C

‖M‖L∞
x

1

A

∫ 1

0

H(f |f∞) dx +
Cp 2

8p2

A2p+1
,(62)

where ‖M(t, ·)‖L∞
x

≤ m∞ +m2(t) by Lemma 4.7.
Next, we chose A = A(t) > 2 by balancing the two r.h.s. terms (e.g. positive

term = 1/2 negative term) and obtain

1

A
≤ C−1/2

(

C
∫ 1

0 H(f |f∞) dx

‖M‖L∞
x
28p2

)
1
2p

,

which in return inserted into (62) yields via a Gronwall Lemma algebraic con-

vergence of the relative entropy
∫ 1

0
H(f |f∞) dx with rate 2p for all p > 1.

Then, in a second step we obtain faster-than-polynominal convergence by
summing over 2p ∈ N and calculate that

∫ 1

0

H(f(t)|f∞) dx ≤ L(t− C),

where (for all 1 < α < 2)

L−1(t) =
∑

2p≥1

t2p

(C 2p)2p 28p2 =
∑

2p≥1

t2p e−8p2 ln 2−2p ln(2pC) ≥ C(α) eln
2(α−1)(t),

for all t large enough and any 1 < α < 2.
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Secondly, in order to prove the regularity estimate

∫ ∞

0

(1 + y)q ‖f(t, ·, y)− f∞(y)‖L∞
x
dy ≤ C e−α t,

we observe that the moment control of Lemma 4.8 implies

∫ T

0

∫ 1

0

∫ ∞

0

(1 + y)qQ+(f, f) dy dx dt ≤ CT .

We then use the regularising effect of 1D heat equation: i.e. that solutions to
∂tf − d(y)∂xxf = g satisfy for all q ∈ [1, 3) with 1

r + 1 = 1
p + 1

q that

‖f‖Lr([0,T ]×Ω) ≤ CT d(y)
1−q
2q ‖fin‖Lp

x
+ CT d(y)

1−q
2q ‖g‖Lp

t,x
,

where d(y)
1−q
2q ≤ (1 + y)1/3 for y large and CT denotes various constants which

depend polynomially on T . Thus,

‖f(·, ·, y)‖L3−ε([t∗,T ]×Ω) ≤ CT

(

‖f(0, ·, y)‖L1
x
+ ‖Q+(f, f)(·, ·, y)‖L1([0,T ]×Ω)

)

,

and a bootstrap argument yields after three iteration steps

∫ ∞

0

(1 + y)q ‖f(T, ·, y)‖H1
x
dy ≤ CT .

The statement follows then by interpolating the polynomially-in-time grow-
ing H1-norm with the faster-than-polynomially converging L1-norm, which fol-
lows from (54) after applying a Cziszár-Kullback-Pinsker inequality

∫ ∞

0

(1 + y)q ‖f(T, ·, y)− f∞(y)‖L∞
x
dy

≤
∫ ∞

0

(

(1 + y)q ‖f(T, ·, y)− f∞(y)‖3/4H1
x

)

‖f(T, ·, y)− f∞(y)‖1/4L1
x
dy

≤ C
3/4
T e−αT .

�

4.6 - Fast-reaction limit towards a macroscopic diffusion equation

In this Section, we consider a family of inhomogeneous coagulation-fragmen-
tation models with rescaled coagulation and fragmentation rates compared to
(48), i.e.

(63) ∂tf
ε − d(y)△xf

ε =
1

ε
(Qcoag(f

ε, f ε) +Qfrag(f
ε)) .
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We shall investigate the fast-reaction limit ε → 0. Formally, we expect in the
limit that

f ε ε→0−−−→ e
− y√

N0(t,x) ,

where the limiting mass density N0(t, x) satisfies the nonlinear diffusion equa-
tion

(64) ∂tN
0(t, x)−△xn(N

0(t, x)) = 0, n(N) =

∫ ∞

0

d(y) y e
− y√

N dy.

In fact, assuming bounded diffusion coefficients d(y), the nonlinear diffusion
equation (64) is also nondegenerate due to

0 < inf
[0,∞)

{d(y)}N ≤ n(N) ≤ sup
[0,∞)

{d(y)}N.

The fast-reaction-limit of (63) without a rate of convergence was proven
rigorously in [12] via a compactness argument. Here, we shall present an inter-
esting approach based on a duality method, which allows to obtain also a rate
of convergence. This duality-based argument was laid out in [11]. However,
it assumes a uniform-in-ε lower bound on M ε(t, x), which, despite expected to
hold, remains an open technical problem to prove rigorously.

First, we recall the lower bound of the entropy dissipation (53), which reads
in the rescaled version as

−ε d
dt

∫

Ω

H(f ε) dx ≥
∫

Ω

M εH(f ε|fNε) dx+ 2

∫

Ω

((M ε)−
√
Nε)2 dx,

where we have neglected the nonnegative diffusion term entirely. As a conse-
quence, we have

∫ ∞

0

∫

Ω

M εH(f ε|fNε) dx dt ≤ εC.

Assuming a uniform lower bound on the number densityM ε(t, x) ≥ M∗ > 0,
it follows from a Cziszár-Kullback-Pinsker inequality that

‖f ε − e
− y√

Nε ‖2L2
t (L

1
x,y)

≤ εC(M∗).

Next, by using an interpolation with bounds of higher order moments, one
can show (see [11] for the details) that for an interpolation exponent 0 < θ < 1,
there exists a remainder f ε

1 ∈ L2
t,x(L

1
y((1 + y) dy)) with

f ε = e
− y√

Nε + εθf ε
1 , with ∇xf ε

1 · ν(x) = 0 on ∂Ω.

As a consequence, we have

∂tN
ε −△xn(N

ε) = εθ△x

∫ ∞

0

d(y)yf ε
1 dy = εθ △xg

ε,

where gε ∈ L2
t,x with ∇xgε · ν(x) = 0 on ∂Ω.
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We apply then a duality method similar to Lemma 4.5 in order to show that
provided initial data Nin ∈ L2

x, then the solutions of the nonlinear diffusion
equation

(65) ∂tN
ε −△xn(N

ε) = εθ△xg
ε, ∇xNε · ν(x)|∂Ω = 0,

converge in L2
t,x as ε→ 0 to the solution N(t, x) of

(66) ∂tN −△xn(N) = 0, ∇xN · ν(x)|∂Ω = 0.

In fact, one can prove analog to Lemma 4.5 that the nonnegative solution
w ≥ 0 of the the dual problem

−∂tw − n(Nε)− n(N)

Nε −N
△xw = H ≥ 0, ∇xw · ν(x)|∂Ω = 0, w(T ) = 0,

satisfies
‖△xw‖L2([0,T ]×Ω) ≤ C‖H‖L2([0,T ]×Ω).

Thus, by testing the difference of eqs. (65) and (66), we estimate

∣

∣

∣

∣

∣

∫ T

0

∫

Ω

(Nε −N)Hdxdt

∣

∣

∣

∣

∣

≤ εθ‖gε‖L2
t,x

‖△xw‖L2([0,T ]×Ω),

which implies by duality

‖Nε −N‖L2
t,x

≤ C εθ ‖gε‖L2
t,x

≤ C εθ,

since H ≥ 0 ∈ C∞
0 ([0, T ]× Ω) is arbitrary.
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