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Abstract

We present an approach based on entropy and duality methods for “triangular” reaction cross diffusion

systems of two equations, in which cross diffusion terms appear only in one of the equations. This approach

enables to recover and extend many existing results on the classical “triangular” Shigesada-Teramoto-Kawasaki

model.
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1 Introduction

Reaction cross diffusion equations naturally appear in physics (cf [4] for example) as well as in population dy-
namics. We are interested here in the study of a class of systems first introduced by Shigesada, Teramoto and
Kawasaki (cf. [22]), in order to model the repulsive effect of populations of two different species in competition,
possibly leading to the apparition of patterns when stable steady solutions are concerned.

The original model writes
{

∂tu−∆x(du u+ d11 u
2 + d12 u v) = u (ru − ra u− rb v),

∂tv −∆x(dv v + d21 u v + d22 v
2) = v (rv − rc v − rd u),

(1)

where u := u(t, x) ≥ 0 and v := v(t, x) ≥ 0 are the number densities of the two considered species (say, species 1
and species 2), ru, rv > 0 are the growth rates in absence of other individuals, ra, rb, rc, rd > 0 correspond to the
logistic inter- and intra-specific competition effects, du, dv > 0 are the diffusion rates. The coefficients dij ≥ 0
(i, j = 1, 2) represent the repulsive effect: individuals of species i increase their diffusion rate in presence of
individuals of their own species when dii > 0 (self diffusion) or of the other species when dij > 0 (i 6= j).

In the sequel, we shall only consider the case when d21 = 0 and d12 > 0, which is sometimes called “triangular”,
since in that particular case, the two-ways coupling between the two equations is due to the competition (reaction)
terms only (the fully coupled system when d21 > 0 and d12 > 0 has a quite different mathematical structure, cf [6]
and [11] for example). We shall also only focus on the case when no self diffusion appears (that is d11 = d22 = 0)
since this case is the most studied one: note however that the mathematical theory when self diffusion is present
(that is, d11 > 0 and/or d22 > 0) is probably not fundamentally different.

Under those assumptions, the Shigesada-Teramoto-Kawasaki system writes
{

∂tu−∆x(du u+ d12 u v) = u (ru − ra u− rb v),

∂tv − dv ∆xv = v (rv − rc v − rd u).
(2)

Following [17], this system can be seen as the formal singular limit of a reaction diffusion system which writes






















∂tu
ε
A − du ∆xu

ε
A = [ru − ra (u

ε
A + uεB)− rb v

ε]uεA +
1

ε
[k(vε)uεB − h(vε)uεA],

∂tu
ε
B − (du + dB)∆xu

ε
B = [ru − ra (u

ε
A + uεB)− rb v

ε]uεB − 1

ε
[k(vε)uεB − h(vε)uεA],

∂tv
ε − dv ∆xv

ε = [rv − rc v
ε − rd (u

ε
A + uεB)] v

ε,

(3)
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where dB > 0, and h, k are two (continuous) functions from R+ to R+.
This limit holds in the following sense: if uεA, uεB, and vε are solutions to system (3) (with ε-independent

initial data and suitable boundary condition), and provided that dB
h(v)

h(v)+k(v) = d12 v, the quantity uεA + uεB
converges (at the formal level) towards u, and the quantity vε converges (at the formal level) towards v, where
u and v are solutions to system (2). Note that this asymptotics can be biologically meaningful: when ε > 0, the
system represents a microscopic model in which the species u can be found in two states (the quiet state uA and
the stressed state uB) and the individuals of this species switch from one state to the other with a “large” rate
(proportional to 1/ε).

We present in this paper results for the existence, uniqueness and stability of a large class of systems in-
cluding (2), in a bounded domain with homogeneous Neumann boundary conditions. More precisely, we relax
the assumption that the competition terms are logistic (quadratic), and replace it with the assumption that the
competition terms are given by power laws (the powers being suitably chosen). We also relax the assumption
that the cross diffusion term is quadratic (proportional to u v) and replace it by the more general assumption
that it writes uφ(v) (with φ a differentiable function from R+ to R+).

More precisely, we shall consider the following system:

∂tu−∆x(du u+ uφ(v)) = u (ru − ra u
a − rb v

b), (4)

∂tv − dv ∆xv = v (rv − rc v
c − rd u

d), (5)

∀t ≥ 0, x ∈ ∂Ω, ∇xu(t, x) · n(x) = ∇xv(t, x) · n(x) = 0, (6)

whose coefficients satisfy the

Assumption A: du, dv > 0, ru, rv, ra, rb, rc, rd > 0, a, b, c, d > 0, and φ := φ(v) ≥ 0 is differentiable (W 1,∞
loc ) with

locally bounded derivative on R+.

We propose two theorems, corresponding to the respective cases d < a and a ≤ d. The first one writes:

Theorem 1. We assume that Ω is a smooth bounded domain of R
N (N ∈ N

∗, and the unit normal outward
vector to Ω at point x ∈ ∂Ω is from now on denoted by n(x)). We also consider Assumption A on the coefficients
of system (4) – (6), and suppose moreover that d < a. Finally, we consider initial data uin ≥ 0, vin ≥ 0 such that
uin ∈ Lp0(Ω), vin ∈ L∞(Ω) ∩W 2,1+p0/d(Ω) for some p0 > 1. If 1 + p0/d ≥ 3, we also assume the compatibility
condition on the boundary ∂Ω (that is, ∇xvin · n(x) = 0).

Then, there exists a global weak solution (u, v) (with u := u(t, x) ≥ 0, v := v(t, x) ≥ 0) of system (4) – (6)
with initial data (uin, vin) lying in Lp0+a([0, T ]× Ω) × L∞([0, T ]× Ω) for all T > 0. More precisely, for all test
functions ψ1, ψ2 ∈ C2

c (R+ × Ω) such that ∀t ∈ R+, x ∈ ∂Ω, ∇xψ1(t, x) · n(x) = ∇xψ2(t, x) · n(x) = 0, the
following identities hold:

−
∫ ∞

0

∫

Ω

∂tψ1 u−
∫

Ω

ψ1(0, ·)uin −
∫ ∞

0

∫

Ω

∆xψ1 (du + φ(v))u =

∫ ∞

0

∫

Ω

ψ1 u (ru − ra u
a − rb v

b), (7)

−
∫ ∞

0

∫

Ω

∂tψ2 v −
∫

Ω

ψ2(0, ·) vin − dv

∫ ∞

0

∫

Ω

∆xψ2 v =

∫ ∞

0

∫

Ω

ψ2 v (rv − rc v
c − rd u

d). (8)

If moreover φ is twice differentiable with locally bounded second order derivative on R+, and if uin ∈ W 2,s0(Ω)
and vin ∈W 2,1+ a

d (s0−1)(Ω) (and if compatibility conditions on the boundary ∂Ω are imposed for uin, (resp. vin)
when s0 ≥ 3, (resp. 1 + a

d (s0 − 1) ≥ 3)) for some s0 > 1 + N/2, then (u, v) is locally Hölder continuous

w.r.t. variables t, x. Moreover, for all T > 0, ∂tu, ∂xixju ∈ Ls0([0, T ]× Ω), ∂tv, ∂xixjv ∈ L1+a
d (s0−1)([0, T ]× Ω)

(i, j = 1..N).

Finally if φ, (resp. uin, vin) have locally Hölder continuous second order derivatives on R+ (resp. Ω), and
if uin and vin satisfy compatibility conditions on the boundary ∂Ω, then u, v have locally Hölder continuous first
order time derivative and second order space derivatives on R+×Ω (so that system (4) – (6) is solved in the strong
sense). In this last setting and provided that b, d ≥ 1 or that the initial data are bounded below by a strictly positive
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constant, if (u1,in, v1,in) and (u2,in, v2,in) are two sets of (nonnegative) initial data, then any corresponding sets
of solutions (u1, v1) and (u2, v2) satisfy (for any T > 0)

||u1 − u2||L2([0,T ]×Ω) + ||v1 − v2||L2([0,T ]×Ω) ≤ CT

(

||u1,in − u2,in||L2(Ω) + ||v1,in − v2,in||L2(Ω)

)

,

for some constant CT > 0. As a consequence, uniqueness holds in this last setting (among solutions having locally
Hölder continuous first order time derivatives and second order space derivatives on R+ × Ω).

Then, our second theorem writes

Theorem 2. We assume that Ω is a smooth bounded domain of RN (N ∈ N
∗). We consider Assumption A on

the coefficients of system (4) – (6), and suppose moreover that a ≤ d, a ≤ 1, d ≤ 2. Finally, we consider initial
data uin ≥ 0, vin ≥ 0 such that uin ∈ L2(Ω), vin ∈ L∞(Ω) ∩W 2,1+2/d(Ω) (If 1 + 2/d ≥ 3, i.-e. d ≤ 1, we also
assume the compatibility condition on the boundary ∂Ω (that is, ∇xvin · n(x) = 0)).

Then, there exists a weak solution (u, v) (with u := u(t, x) ≥ 0, v := v(t, x) ≥ 0) of system (4) – (6) with
initial data (uin, vin) lying in L2([0, T ]× Ω)× L∞([0, T ]× Ω) for all T > 0.

More precisely, for all test functions ψ1, ψ2 ∈ C2
c (R+ ×Ω) such that ∀t ∈ R+, x ∈ ∂Ω, ∇xψ1(t, x) ·n(x) =

∇xψ2(t, x) · n(x) = 0, identities (7), (8) hold.

Those existence theorems are consequences of propositions showing the convergence in a singular perturbation
problem. This problem, analogous to system (3) in the case of the Shigesada-Kawasaki-Teramoto model, writes:























∂tu
ε
A − dA ∆xu

ε
A = [ru − ra (u

ε
A + uεB)

a − rb (v
ε)b]uεA +

1

ε
[k(vε)uεB − h(vε)uεA],

∂tu
ε
B − (dA + dB)∆xu

ε
B = [ru − ra (u

ε
A + uεB)

a − rb (v
ε)b]uεB − 1

ε
[k(vε)uεB − h(vε)uεA],

∂tv
ε − dv ∆xv

ε = [rv − rc (v
ε)c − rd (u

ε
A + uεB)

d] vε,

(9)

with the homogeneous Neumann boundary condition

∀t ≥ 0, x ∈ ∂Ω, ∇xu
ε
A(t, x) · n(x) = ∇xu

ε
B(t, x) · n(x) = ∇xv

ε(t, x) · n(x) = 0, (10)

and the regularized initial data

uεA(0, ·) = uεA,in := χε×(uA,in∗ρε)+ε, uεB(0, ·) = uεB,in := χε×(uA,in∗ρε)+ε, vε(0, ·) = vεin := vin+ε, (11)

where uA,in and uB,in are functions defined on Ω and extended (by zero) on R
N − Ω (so that the convolution

on R
N can be used), (ρε)ε is a sequence of mollifiers on R

N , and for all ε > 0, χε is a cutoff function (given by
Urysohn’s lemma) lying in C∞(RN ) and satisfying

0 ≤ χε ≤ 1 in R
N , χε = 1 inside {x ∈ Ω : d(x, ∂Ω) > 2ε}, χε = 0 outside {x ∈ Ω : d(x, ∂Ω) > ε}. (12)

We introduce the

Assumption B: dA, dB, dv > 0, ru, rv, ra, rb, rc, rd > 0, a, b, c, d > 0. The functions h and k are differentiable
with locally bounded derivative on R+ (W 1,∞

loc ) and are lower bounded by a strictly positive constant : ∀v ≥ 0,
h(v), k(v) ≥ h0 > 0.

Our results in this direction are summarized in the two following propositions:

Proposition 1. We assume that Ω is a smooth bounded domain of RN (N ∈ N
∗). We also consider Assumption

B on the coefficients of system (9), and suppose moreover that d < a. Finally, we consider initial data uA,in ≥ 0,
uB,in ≥ 0, vin ≥ 0 such that uA,in, uB,in ∈ Lp0(Ω), vin ∈ L∞(Ω)∩W 2,1+p0/d(Ω) for some p0 > 1 (If 1+p0/d ≥ 3,
we also assume the compatibility condition on the boundary ∂Ω (∇xvin · n(x) = 0 when 1 + p0/d ≥ 3)).

Then, for any ε > 0, there exists a unique (nonnegative for each component) strong (in the sense that all
derivatives appearing in the equation lie in some Lp with p ∈ [1,∞]) solution (uεA, u

ε
B, v

ε) to system (9)–(11).
Moreover, when ε → 0, (uεA, u

ε
B, v

ε) converges (up to a subsequence) for almost every (t, x) ∈ R+ × Ω to a limit
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(uA, uB, v) (nonnegative for each component) lying in Lp0+a([0, T ] × Ω) × Lp0+a([0, T ] × Ω) × L∞([0, T ] × Ω)
for all T > 0. Finally, h(v)uA = k(v)uB and (u := uA + uB, v) is a weak solution of system (4) – (6) with

du + φ(v) = dA + dB
h(v)

h(v)+k(v) and initial data u(0, ·) = uA,in + uB,in, v(0, ·) = vin. More precisely, for all test

functions ψ1, ψ2 ∈ C2
c (R+ × Ω) such that ∀t ∈ R+, x ∈ ∂Ω, ∇xψ1(t, x) · n(x) = ∇xψ2(t, x) · n(x) = 0, the

following identities hold:

−
∫ ∞

0

∫

Ω

∂tψ1 u−
∫

Ω

ψ1(0, ·) (uA,in + uB,in)−
∫ ∞

0

∫

Ω

∆xψ1

(

u (dA + dB
h(v)

h(v) + k(v)
)

)

(13)

=

∫ ∞

0

∫

Ω

ψ1 u (ru − ra u
a − rb v

b),

−
∫ ∞

0

∫

Ω

∂tψ2 v −
∫

Ω

ψ2(0, ·) vin − dv

∫ ∞

0

∫

Ω

∆xψ2 v =

∫ ∞

0

∫

Ω

ψ2 v (rv − rc v
c − rd u

d). (14)

Proposition 2. We assume that Ω is a smooth bounded domain of RN (N ∈ N
∗). We also consider Assumption

B on the coefficients of system (9), and suppose moreover that a ≤ d, a ≤ 1, d ≤ 2. Finally, we consider initial
data uA,in ≥ 0, uB,in ≥ 0, vin ≥ 0 such that uA,in, uB,in ∈ L2(Ω), vin ∈ L∞(Ω) ∩W 2,1+2/d(Ω) (if 1 + 2/d ≥ 3,
i.-e. d ≤ 1, we also assume the compatibility condition on the boundary ∂Ω (∇xvin · n(x) = 0)).

Then, for any ε > 0, there exists a unique (nonnegative for each component) strong (in the sense that all
derivatives appearing in the equation lie in some Lp with p ∈ [1,∞]) solution (uεA, u

ε
B, v

ε) to system (9)–(11).
Moreover, when ε → 0, (uεA, u

ε
B, v

ε) converges (up to a subsequence) for almost every (t, x) ∈ R+ × Ω to a
limit (uA, uB, v) (nonnegative for each component) lying in L2([0, T ] × Ω) × L2([0, T ] × Ω) × L∞([0, T ] × Ω)
for all T > 0. Finally, h(v)uA = k(v)uB and (u := uA + uB, v) is a weak solution to system (4) – (6) with

du + φ(v) = dA + dB
h(v)

h(v)+k(v) and initial data u(0, ·) = uA,in + uB,in, v(0, ·) = vin. More precisely, for all test

functions ψ1, ψ2 ∈ C2
c (R+×Ω) such that ∀t ∈ R+, x ∈ ∂Ω, ∇xψ1(t, x)·n(x) = ∇xψ2(t, x)·n(x) = 0, identities

(13), (14) hold.

Remark 1. Theorems 1 and 2 use classical parabolic (W 2,1
s with the notations of [14]) estimates. For the sake of

simplicity, we chose to use a non-optimal version, formulated below in Proposition 3. Note that the assumptions
could be improved (see [14]): first, the estimates do not require a full compatibility condition on the boundary ∂Ω
in the critical case s = 3; secondly, some of the initial data assumed to belong to W 2,s(Ω) in our theorems and
propositions can be assumed to belong only to the fractional Sobolev space W 2−2/s,s(Ω).

Remark 2. In the case of Theorem 2, the compactness of the nonlinear reaction terms u1+a and ud is obtained
thanks to an Lp estimate for some p > 2 given by a duality lemma. Notice first that this allows to consider
parameters a > 1 sufficiently close to 1 and d > 2 sufficiently close to 2 in Theorem 2. Secondly, the duality
lemma (stated in Lemma 4) for initial data in L2(Ω) is actually valid for initial data in Lp(Ω) for p < 2 sufficiently
close to 2. This allows to replace in Theorem 2 the assumption uin ∈ L2(Ω) by the weaker assumption uin ∈ Lp(Ω)
for some p < 2 sufficiently close to 2.

Remark 3. Since (as will be seen), v satisfies a maximum principle in the previous theorems, those theorems have
an easy extension when the functions v 7→ rb v

b and v 7→ rc v
c are replaced by any smooth functions of v (with an

arbitrary growth when v → ∞). The functions u 7→ ra u
a and u 7→ rd u

d can also be replaced by smooth functions
in the previous theorems, provided that those functions behave in the same way as u 7→ ra u

a and u 7→ rd u
d when

u→ ∞.

Remark 4. In the last setting of Theorem 1, a minimum principle for v allows to replace the assumption that
φ′′ is locally Hölder continuous on R+ with the assumption that φ′′ is locally Hölder continuous on R

∗
+, provided

that the initial data for v is bounded below by a strictly positive constant.

The model (1) was proposed by Shigesada, Teramoto and Kawasaki in [22]. For modeling issues, see also [19].
As far as mathematical analysis is concerned, two directions have been widely investigated: on the one hand,
steady-states and stability, motivated by the formation of patterns (see [12] and the references inside); on the
other hand, existence, smoothness and uniqueness of solutions.
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The local (in time) existence was established by Amann: in his series of papers [1]-[3], he proved a general
result of existence of local (in time) solutions for parabolic systems, including (1) and (4)-(5).

The global (in time) existence has then been proved under various assumptions. One of the difficulties arising
is the use of Sobolev inequalities in the parabolic estimates, which only provides results in low dimension. Indeed,
for the well studied triangular quadratic case (that is, (1) with d21 = 0), most papers allowing strong cross diffusion
(that is, when no restriction is imposed on d12) only deal with low dimensions: for results in dimension 1, see
[16], [17] and [21]. In [27], Yagi showed the global existence in dimension 2 in the presence of self diffusion, and
Lou, Ni and Wu obtained it in [15] without condition on self diffusion, together with a stability result. Choi, Lui
and Yamada first got rid of the restriction on the dimension in [7] (without self diffusion in the second equation),
provided that the cross diffusion coefficient d12 is sufficiently small. In a following paper [8], they removed the
smallness assumption on the cross diffusion in the presence of self diffusion in the first equation. However, in
the presence of self diffusion in the second equation, they require that the dimension is lower than 6. Finally,
Phan improved this result up to dimension lower than 10 in [24], and in any dimension under the assumption
that the self diffusion dominates the cross diffusion in [25]. For the quadratic system (2) without self diffusion,
our Theorem 2 gives the existence of global solutions in any dimension, without restriction on the strength of the
cross diffusion.

When it comes to systems with general reaction terms of the form (4)-(5), Posio and Tesei first showed the
existence (in any dimension) of global solutions under some strong assumption on the reaction coefficients in [20].
This assumption was relaxed in [28] by Yamada, who obtained the existence of global strong solutions under the
assumption a > d, which is exactly our assumption in Theorem 1. The main differences between our work (in the
case a > d) and [28] are the following: first, our Theorem 1 allows singular initial data leading to weak solutions
(and provide results very close to those of [28] when initial data are smooth). Then our method, based on simple
energy estimates, presents an unifying proof for a wide range of parameters including both the quadratic case and
the case a > d. Finally, the approximating system that we use leads to self contained proofs without reference to
abstract existence theorems. Note also that (for general reaction terms) Wang got similar results in [26] in the
presence of self diffusion in the first equation, under a condition (depending on the dimension) of smallness of the
parameter d w. r. t. the parameter a.

Systems of reaction diffusion equations such as (3) were introduced by Iida, Mimura and Ninomiya in [12]
to approximate cross diffusion systems, in particular from the point of view of stability. The convergence of the
stationary problem was explored by Izuhara and Mimura in [13], both numerically and theorically. In [9], Conforto
and Desvillettes showed the convergence of the solutions of (3) towards a solution of the system (2) in dimension
one. Our paper generalizes their result to a wider set of admissible reaction terms and in any dimension. Note
finally that Murakawa obtained similar results for a class of non triangular systems in [18].

The rest of our paper is structured as follows: Propositions 1 and 2 are proven in Section 2. Then, Section 3
is devoted to the proof of Theorems 1 and 2.

2 Proof of the validity of the singular perturbation

We begin with the

Proof of Proposition 1. We fix T > 0, and write (for any q ∈ [1,∞]) Lq = Lq([0, T ] × Ω). In the proof of this
proposition and of the following proposition, the constant CT > 0 only depends on the parameters dA, dB, dv,
ru, rv, ra, rb, rc, rd, a, b, c, d, the domain Ω, the initial data uA,in, uB,in, vin, the functions h and k, and the time
T . In particular, all the estimates are uniform w.r.t ε.

We first observe that for a given ε > 0, standard theorems for reaction-diffusion equations show the existence
of a (nonnegative for each component) unique strong (in the sense that all derivatives appearing in the equations
are defined a.e.) solution (uεA, u

ε
B, v

ε) to system (9), (10), (11).
We refer to [10] for complete proofs.

We now establish three lemmas stating the (uniform w.r.t. ε) a priori estimates for this solution (uεA, u
ε
B, v

ε).

Lemma 1. The following (uniform w.r.t ε) estimates hold:

sup
0≤t≤T

∫

Ω

(uεA + uεB)(t) ≤ CT ; ‖uεA + uεB‖L1+a ≤ CT . (15)
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Proof of Lemma 1. We notice that uεA + uεB satisfies the equation

∂t(u
ε
A + uεB)−∆x[M

ε(uεA + uεB)] = [ru − ra(u
ε
A + uεB)

a − rb(v
ε)b](uεA + uεB) ≤ CT , (16)

where M ε =
dAuε

A+(dA+dB)uε
B

uε
A+uε

B
. We integrate w.r.t. space and time to get

sup
0≤t≤T

∫

Ω

(uεA + uεB)(t) ≤
∫

Ω

(uεA,in + uεB,in) + CT ≤ CT , (17)

so that

sup
0≤t≤T

∫

Ω

(uεA + uεB)(t) + ra

∫ T

0

∫

Ω

(uεA + uεB)
1+a ≤

∫

Ω

(uεA,in + uεB,in) + ru

∫ T

0

∫

Ω

(uεA + uεB) ≤ CT . (18)

Lemma 2. For all 1 < q ≤ 1 + p0/d, the following (uniform w.r.t ε) estimates hold:

‖vε‖L∞ ≤ CT ; ‖∇xv
ε‖2L2q ≤ CT (1+‖(uεA+uεB)d‖Lq ); ‖∂tvε‖La+p/d ≤ CT (1+‖(uεA+uεB)d‖Lq ). (19)

Proof of Lemma 2. The first estimate is a consequence of the maximum principle for the equation satisfied by
vε. We can then apply the maximal regularity result for the heat equation (satisfied by v when the reaction
term is considered as given) in order to get the third estimate. The same bound also holds for ∂xixjv

ε, so that
interpolating with the first estimate, the second estimate holds.

We now write down an (uniform w.r.t. ε) estimate obtained thanks to the use of a Lyapounov-like (entropy)
functional:

Lemma 3. For all p ∈]1, p0], the following inequalities hold:

‖uεA + uεB‖p+a
Lp+a ≤ CT (1 + ‖uεA + uεB‖p+d

Lp+d), (20)

‖∇x(u
ε
A)

p/2‖2L2 + ‖∇x(u
ε
B)

p/2‖2L2 +
1

ε
‖(h(vε)uεA)p/2 − (k(vε)uεB)

p/2‖2L2 ≤ CT (1 + ‖uεA + uεB‖p+d
Lp+d). (21)

Proof of Lemma 3. We define the following entropy for any p > 0 (with p 6= 1):

E
ε(t) =

∫

Ω

h(vε)p−1 (u
ε
A)

p

p
(t) +

∫

Ω

k(vε)p−1 (u
ε
B)

p

p
(t) (=: E

ε
A(t) + E

ε
B(t)). (22)

We compute the derivative

d

dt
E

ε
A(t) =

∫

Ω

∂t{h(vε)p−1 (u
ε
A)

p

p
}(t)

=
p− 1

p

∫

Ω

∂tv
εh′(vε)h(vε)p−2(uεA)

p +

∫

Ω

∂tu
ε
A(u

ε
A)

p−1h(vε)p−1

=
p− 1

p

∫

Ω

∂tv
εh′(vε)h(vε)p−2(uεA)

p +

∫

Ω

[ru − ra(u
ε
A + uεB)

a − rb(v
ε)b](uεA)

ph(vε)p−1

+
1

ε

∫

Ω

[k(vε)uεB − h(vε)uεA](u
ε
A)

p−1h(vε)p−1 + dA

∫

Ω

∆xu
ε
A(u

ε
A)

p−1h(vε)p−1,

(23)

where the last term is estimated by integrating by part (and using the inequality 2|ab| ≤ a2 + b2) in the case
when p > 1:

dA

∫

Ω

∆xu
ε
A(u

ε
A)

p−1h(vε)p−1

=− dA (p− 1)

∫

Ω

|∇xu
ε
A|2(uεA)p−2h(vε)p−1 − dA (p− 1)

∫

Ω

∇xu
ε
A · ∇xh(v

ε)(uεA)
p−1h(vε)p−2

≤− dA
2

(p− 1)

∫

Ω

|∇xu
ε
A|2(uεA)p−2h(vε)p−1 +

dA
2

(p− 1)

∫

Ω

|∇xh(v
ε)|2(uεA)ph(vε)p−3

=− 2 dA
(p− 1)

p2

∫

Ω

|∇x(u
ε
A)

p/2|2h(vε)p−1 +
(p− 1)

2
dA

∫

Ω

|∇xv
ε|2(uεA)p(h′(vε))2h(vε)p−3.

(24)
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Similarly, we get for uεB,

d

dt
E

ε
B(t) ≤

p− 1

p

∫

Ω

∂tv
εk′(vε)k(vε)p−2(uεB)

p

+

∫

Ω

[ru − ra(u
ε
B + uεB)

a − rb(v
ε)b](uεB)

pk(vε)p−1 − 1

ε

∫

Ω

[k(vε)uεB − h(vε)uεA](u
ε
B)

p−1k(vε)p−1

−2(dA + dB)
p− 1

p2

∫

Ω

|∇x(u
ε
B)

p/2|2k(vε)p−1 +
p− 1

2
(dA + dB)

∫

Ω

|∇xv
ε|2(uεB)p(k′(vε))2k(vε)p−3.

(25)

We sum the two estimates and integrate w.r.t time to get (still for any p > 1)
∫

Ω

h(vε)p−1 (u
ε
A)

p

p
(T ) + k(vε)p−1 (u

ε
B)

p

p
(T )

+2 dA
p− 1

p2

∫ T

0

∫

Ω

|∇x(u
ε
A)

p/2|2h(vε)p−1 + 2 (dA + dB)
p− 1

p2

∫ T

0

∫

Ω

|∇x(u
ε
B)

p/2|2k(vε)p−1

+
1

ε

∫ T

0

∫

Ω

[k(vε)uεB − h(vε)uεA][(u
ε
B)

p−1k(vε)p−1 − (uεA)
p−1h(vε)p−1]

+ ra

∫ T

0

∫

Ω

(uεA + uεB)
a[(uεA)

ph(vε)p−1 + (uεB)
pk(vε)p−1]

≤
∫

Ω

h(vεin)
p−1

(uεA,in)
p

p
+ k(vεin)

p−1
(uεA,in)

p

p

+
p− 1

p

∫ T

0

∫

Ω

∂tv
ε[h′(vε)h(vε)p−2(uεA)

p + k′(vε)k(vε)p−2(uεB)
p]

+ru

∫ T

0

∫

Ω

(uεA)
ph(vε)p−1 + (uεB)

pk(vε)p−1

+
p− 1

2

∫ T

0

∫

Ω

[dA(u
ε
A)

p(h′(vε))2h(vε)p−3 + (dA + dB)(u
ε
B)

p(k′(vε))2k(vε)p−3]|∇xv
ε|2.

(26)

Let us estimate the right-hand side of inequality (26): the first term is finite since p ≤ p0. Thanks to the
maximum principle for the density vε (obtained in Lemma 2) and the regularity of the functions h and k in
Assumption B, the terms h(vε), h′(vε) and k(vε), k′(vε) are uniformly bounded in L∞. We then can estimate the
third term with Jensen’s inequality. The second and the last terms are estimated thanks to Hölder’s inequality
and bounds given by Lemma 2. More precisely, for the second term, we get

∣

∣

∣

∣

∣

p− 1

p

∫ T

0

∫

Ω

∂tv
ε[h′(vε)h(vε)p−2(uεA)

p + k′(vε)k(vε)p−2(uεB)
p]

∣

∣

∣

∣

∣

≤ Cp‖h′(vε)h(vε)p−2 + k′(vε)k(vε)p−2‖L∞‖∂tvε‖L1+p/d‖(uεA + uεB)
p‖L1+d/p ≤ CT (1 + ‖uεA + uεB‖p+d

Lp+d),

(27)

and for the last term, we get
∣

∣

∣

∣

∣

p− 1

2

∫ T

0

∫

Ω

[dA(u
ε
A)

p(h′(vε))2h(vε)p−3 + (dA + dB)(u
ε
B)

p(k′(vε))2k(vε)p−3]|∇xv
ε|2
∣

∣

∣

∣

∣

≤ Cp‖h′(vε)2h(vε)p−3 + k′(vε)2k(vε)p−3‖L∞‖|∇xv
ε|2‖L1+p/d‖(uεA + uεB)

p‖L1+d/p ≤ CT (1 + ‖uεA + uεB‖p+d
Lp+d).

(28)

The terms of the left-hand side of (26) being all nonnegative, they are dominated by the quantity (1 +

‖uεA + uεB‖
p+d
Lp+d). We then conclude the estimates on space derivatives by using the lower bound of h and k

(remember Assumption B) and the following elementary inequality for all positive x, y : (x− y) (xp−1 − yp−1) ≥
Cp |xp/2 − yp/2|2.

As a first consequence, we can improve the Lebesgue space in which we get a uniform estimate for uεA + uεB.
Taking p = p0 and using Hölder’s inequality, we see that ‖uεA + uεB‖Lp0+a is uniformly (w.r.t. ε) bounded.
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Let us combine the previous estimate and Lemma 2 with q = 1 + p0/d > 1:

‖∇xv
ε‖2L2 (1+p0/d) + ‖∂tvε‖L1+p0/d ≤ CT (1 + ‖(uεA + uεB)

d‖L1+p0/d) ≤ CT . (29)

Then, thanks to Jensen’s inequality, the sequence (vε)ε is included in a bounded subset of {v ∈ L2([0, T ], H1(Ω)) :
∂tv ∈ L1([0, T ], L1(Ω))}. From Aubin’s lemma (see Theorem 5 in [23]) we then can extract a subsequence - still
called (vε)ε - which converges towards a limit v (lying in L∞) a.e.:

vε(t, x) → v(t, x) almost everywhere on [0, T ]× Ω. (30)

Recall eq. (16) for uεA + uεB. Notice that the reaction term in (16) is uniformly bounded in Lλ with λ =
p0+a
1+a > 1. As a consequence, ∂t(uεA + uεB) in (16) is uniformly bounded in Lλ([0, T ],W−2,λ). Furthermore, let us
choose some p in the interval ]1,min{p0, 2}[. Then for C = A or B,

‖∇xu
ε
C‖L1 ≤ ‖(uεC)p/2−1∇xu

ε
C‖L2 ‖(uεC)1−p/2‖L2 =

2

p
‖∇x(u

ε
C)

p/2‖L2 ‖(uεC)2−p‖1/2L1

≤ CT (1 + ‖uεA + uεB‖
p+d
2

Lp+d) ‖(uεC)2−p‖1/2L1 ≤ CT ,

(31)

thanks to Lemma 3. We therefore can apply Aubin’s lemma to extract a subsequence - still called (uεA + uεB)ε -
which converges towards a limit u (lying in La+p0) a.e.:

uεA(t, x) + uεB(t, x) → u(t, x) almost everywhere on [0, T ]× Ω. (32)

Let us take p in the interval ]1,min{p0, 2}[. We use the elementary inequality (for all x > 0) |x − 1| ≤
Cp |xp/2 − 1| × |x1−p/2 + 1| to get

∫ T

0

∫

Ω

|k(vε)uεB − h(vε)uεA| ≤ Cp

∫ T

0

∫

Ω

|(uεBk(vε))p/2 − (uεAh(v
ε))p/2| × [(uεBk(v

ε))1−p/2 + (uεAh(v
ε))1−p/2]

≤ Cp

(

∫ T

0

∫

Ω

|(uεBk(vε))p/2 − (uεAh(v
ε))p/2|2

)1/2

×
(

∫ T

0

∫

Ω

[(uεBk(v
ε))1−p/2 + (uεAh(v

ε))1−p/2]2

)1/2

≤
√
εCT ,

(33)

thanks to Lemma 3. Then, up to a subsequence,

h(vε(t, x))uεA(t, x) − k(vε(t, x))uεB(t, x) → 0 almost everywhere on [0, T ]× Ω. (34)

Now thanks to the convergences (30), (32) and (34), we can compute

uεA(t, x) =
k(vε) (uεA + uεB) + [h(vε)uεA − k(vε)uεB]

h(vε) + k(vε)
→ k(v)u

h(v) + k(v)
=: uA(t, x) almost everywhere on [0, T ]× Ω,

(35)
and similarly

uεB(t, x) =
h(vε) (uεA + uεB)− [h(vε)uεA − k(vε)uεB]

h(vε) + k(vε)
→ h(v)u

h(v) + k(v)
=: uB(t, x) almost everywhere on [0, T ]× Ω.

(36)
We now can pass to the limit in equation (16) for uεA + uεB and equation (9) for vε. We use Assumption B

and the previous estimates to avoid L1 concentration in (uεA + uεB)
1+a and (uεA + uεB)

d. The limit of M ε in (16)
is computed with the definitions of uA and uB in (35) and (36). This concludes the proof of Proposition 1.

We now turn to the

Proof of Proposition 2. As in Proposition 1, we consider a strong solution (uεA, u
ε
B, v

ε) of eq. (9), (10).

Note first that the estimates of Lemmas 1 and 2 still hold under the assumptions of Proposition 2 (with p0 = 2
in the case of Lemma 2).

We now introduce a duality lemma in the spirit of the one used in [5]:
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Lemma 4. We consider a function M :=M(t, x) satisfying

0 < m0 ≤M(t, x) ≤ m1 for t ≥ 0 and x ∈ Ω, (37)

for some constants m0,m1 > 0. Then one can find p∗ > 2 such that for all p ∈ [2, p∗[, for all T ≥ 0, there exists
a constant CT > 0 depending only on Ω, N , T , and the constants m0, m1, p, such that for any initial data uin
in L2(Ω) and any K > 0, all nonnegative solutions u of the system











∂tu−∆x(Mu) ≤ K in [0, T ]× Ω,

u(0, x) = uin(x) in Ω,

∇x(Mu)(t, x) · n(x) = 0 on [0, T ]× ∂Ω,

(38)

satisfy
‖u‖Lp([0,T ]×Ω) ≤ CT

(

‖uin‖L2(Ω) +K
)

. (39)

Proof of Lemma 4. It relies on the study of the dual problem










∂tv +M∆xv = −f in [0, T ]× Ω,

v(T, x) = 0 in Ω,

∇xv(t, x) · n(x) = 0 on [0, T ]× ∂Ω,

(40)

for f a nonnegative function in Lp′

([0, T ]× Ω).

Using the notations of [5], we define the constant Cm,q > 0 for m > 0, q ∈]1, 2] as the best constant in the
parabolic estimate

‖∆xw‖Lq([0,T ]×Ω) ≤ Cm,q ‖g‖Lq([0,T ]×Ω), (41)

where g is any function in Lq([0, T ]× Ω) and w is the solution of the backward heat equation










∂tw +m∆xw = g in [0, T ]× Ω,

w(T, x) = 0 in Ω,

∇xw(t, x) · n(x) = 0 on [0, T ]× ∂Ω.

(42)

Let p ≥ 2, q = p′ ≤ 2 and let f be any nonnegative function in Lq. We consider the solution v of system (40).
Notice that from a minimum principle, v is nonnegative. Then, from Lemma 2.2 and Remark 2.3 in [5], there
exists a constant CT depending only on Ω, N , T and m0, m1, q such that v satisfies

‖∆xv‖Lq ≤ CT ‖f‖Lq , (43)

and
‖v(0, ·)‖L2(Ω) ≤ CT ‖f‖Lq , (44)

provided that q > 2N+2
N+4 and

Cm0+m1
2 ,q

m1 −m0

2
< 1. (45)

Let us first assume that condition (45) holds for some fixed q ∈]2N+2
N+4 , 2]. Then we compute

d

dt

∫

Ω

u(t)v(t) ≤ K

∫

Ω

v(t) −
∫

Ω

u(t)f(t), (46)

so that integrating w.r.t. time, and using the condition v(T, ·) = 0,

∫ T

0

∫

Ω

uf ≤ K

∫ T

0

∫

Ω

v +

∫

Ω

uin v(0, ·). (47)

The first term is estimated with (43)

∫ T

0

∫

Ω

v = −
∫ T

0

∫

Ω

∫ T

t

∂tv =

∫ T

0

∫

Ω

∫ T

t

(f +M∆xv) (48)
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≤ T

(

∫ T

0

∫

Ω

f +m1|∆xv|
)

≤ T 1+1/p |Ω|1/p (1 +m1CT ) ‖f‖q,

and the second term with (44)
∫

Ω

uin v(0, ·) ≤ ‖uin‖L2(Ω) ‖v(0, ·)‖L2(Ω) ≤ CT ‖f‖Lq ‖uin‖L2(Ω). (49)

Recombining,
∫ T

0

∫

Ω

u f ≤ CT

(

K + ‖uin‖L2(Ω)

)

‖f‖Lq , (50)

which by duality gives estimate (39).
It remains to check that there exists an interval [2, p∗[ in which any p satisfies condition (45) with q = p′. This

is done in [5].

We apply Lemma 4 to eq. (16) and see that for some p∗ > 2,

||uεA + uεB||Lp∗ ≤ CT . (51)

Recalling definition (22) and computation (23) in the case when p ∈]0, 1[, we use the inequality

−dA
∫

Ω

∆xu
ε
A(u

ε
A)

p−1h(vε)p−1 ≤ −2 dA
(1− p)

p2

∫

Ω

|∇x(u
ε
A)

p/2|2h(vε)p−1

+
(1− p)

2
dA

∫

Ω

|∇xv
ε|2(uεA)p(h′(vε))2h(vε)p−3,

and get the estimate

∫

Ω

h(vεin)
p−1

(uεA,in)
p

p
+ k(vεin)

p−1
(uεB,in)

p

p

+2 dA
1− p

p2

∫ T

0

∫

Ω

|∇x(u
ε
A)

p/2|2h(vε)p−1 + 2 (dA + dB)
1− p

p2

∫ T

0

∫

Ω

|∇x(u
ε
B)

p/2|2k(vε)p−1

−1

ε

∫

Ω

[k(vε)uεB − h(vε)uεA][(u
ε
B)

p−1k(vε)p−1 − (uεA)
p−1h(vε)p−1]

≤
∫

Ω

h(vε)p−1 (u
ε
A)

p

p
(T ) + k(vε)p−1 (u

ε
B)

p

p
(T )

+
1− p

p

∫ T

0

∫

Ω

∂tv
ε[h′(vε)h(vε)p−2(uεA)

p + k′(vε)k(vε)p−2(uεB)
p]

−
∫ T

0

∫

Ω

[ru − ra(u
ε
A + uεB)

a − rb(v
ε)b][(uεA)

ph(vε)p−1 + (uεB)
pk(vε)p−1]

+
1− p

2

∫ T

0

∫

Ω

[dA(u
ε
A)

p(h′(vε))2h(vε)p−3 + (dA + dB)(u
ε
B)

p(k′(vε))2k(vε)p−3]|∇xv
ε|2.

(52)

Note that in estimate (52), the first and third term of the r.h.s. are clearly bounded (w.r.t. ε) thanks to Lemma 1
and estimate (51). The second and fourth terms are estimated thanks to inequalities (27) and (28) and lead to
estimate (21).

Using (51) and the elementary inequality

(x− y) (xp−1 − yp−1) ≥ Cp |xp/2 − yp/2|2

for p ∈]0,min(1, p∗ − d)[, we see that

||∇x(u
ε
A)

p/2||L2 ≤ CT , ||∇x(u
ε
B)

p/2||L2 ≤ CT ,
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||(h(vε)uεA)p/2 − (k(vε)uεB)
p/2||L2 ≤ CT

√
ε.

Using Lemma 2 with p0 = 2, we see that we then can extract a subsequence - still called (vε)ε - which converges
towards a limit v (lying in L∞) for a.e. (t, x) ∈ [0, T ]× Ω. Moreover, thanks to (51), ∂t(uεA + uεB) is bounded in
H−2. Finally, thanks to estimate (31) (still with p ∈]0,min(1, p∗−d)[), we see that we can extract a subsequence -
also called (uεA+uεB)ε - which converges towards a limit u (lying in L2) for a.e. (t, x) ∈ [0, T ]×Ω. We also can use
inequality (33) (still with p ∈]0,min(1, p∗ − d)[), and end the proof of Proposition 2 as that of Proposition 1.

3 Proof of existence, regularity and stability

Proof of Theorem 1. First step: existence

We denote by v1 = v1(vin,Ω, N, dv, rv, rc, c) > 0 a positive constant given by the maximum principle such
that any nonnegative function v with initial datum v(0, ·) = vin, satisfying Neumann boundary conditions and
the inequality

∂tv − dv∆xv ≤ [rv − rcv
c]v, (53)

satisfies 0 ≤ v(t, x) ≤ v1 for all t ≥ 0, x ∈ Ω. Thanks to a smooth cutoff function χ(v) (χ(v) = 1 for 0 ≤
v ≤ v1, χ(v) = 0 for v ≥ 2v1 and 0 ≤ χ(v) ≤ 1 for all v ≥ 0), we define φB(v) = χ(v)φ(v) for all v ≥ 0.
Since φB is a continuous function with compact support, it is uniformly bounded by some positive constant
φ1. Then Proposition 1 gives that the solution of system (9)–(11) with parameters dA := du/2 > 0, dB :=
du + φ1 > 0, h(v) := du/2 + φB(v) ≥ du/2 > 0, k(v) := du/2 + φ1 − φB(v) ≥ du/2 > 0 and initial data
uA,in := k(vin)

h(vin)+k(vin)uin ≥ 0, uB,in := h(vin)
h(vin)+k(vin)uin ≥ 0 and vin ≥ 0 converge a. e. on R+×Ω when ε tends to

zero, and its limit (uA, uB, v) provides a solution (u := uA + uB, v) ∈ Lp0+a(Ω) × L∞(Ω) of system (4)–(6) with
du + φ(v) replaced by dA + dB

h(v)
h(v)+k(v) = du + φB(v). Then, as a solution of eq. (6), v(t, x) satisfies inequality

(53), and by the maximum principle, the bound 0 ≤ v(t, x) ≤ v1 is valid. By definition of φB, we then have
φB(v(t, x)) = φ(v(t, x)) for all t ≥ 0, x ∈ Ω, so that (u, v) is actually a solution of (4)–(6).

Second step: regularity, first part

Using the maximum principle, and the maximal regularity for the heat equation, we see that v lies in L∞ and
(for q0 > s0 defined by a (s0 − 1) = d (q0 − 1)),

‖∂tv‖Lq0 ≤ CT (1 + ‖ud‖Lq0 ), ‖∇2
xv‖Lq0 ≤ CT (1 + ‖ud‖Lq0 ). (54)

We interpolate the second estimate with the L∞ bound to get ‖ |∇xv|2‖Lq0 ≤ CT (1+‖ud‖Lq0 ). We then multiply
by up−1 eq. (4) and integrate w.r.t. space and time. We get

∫

Ω

up

p
(T ) + (p− 1)

4

p2

∫ T

0

∫

Ω

(du + φ(v)) |∇xu
p/2|2

=

∫

Ω

upin
p

+

∫ T

0

∫

Ω

up (ru − rau
a − rbv

b)− 2

p
(p− 1)

∫ T

0

∫

Ω

up/2∇xu
p/2∇x(φ(v)).

Selecting p = a (s0−1) = d (q0−1), we estimate the last term thanks to the L∞ bound for v and the Lq0 estimate
for |∇xv|2:

∣

∣

∣

∣

∣

∫ T

0

∫

Ω

up/2∇xu
p/2∇x(φ(v))

∣

∣

∣

∣

∣

≤
∫ T

0

∫

Ω

du
p
|∇xu

p/2|2 + p

4 du

∫ T

0

∫

Ω

up |∇x(φ(v))|2

≤
∫ T

0

∫

Ω

du
p
|∇xu

p/2|2 + CT

(

∫ T

0

∫

Ω

up+d

)p/(p+d)

×
(

∫ T

0

∫

Ω

|∇xv|2(p+d)/d

)d/p+d

≤
∫ T

0

∫

Ω

du
p
|∇xu

p/2|2 + CT

(

1 +

∫ T

0

∫

Ω

up+d

)

.

(55)
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We get

∫

Ω

up

p
(T ) + (p− 1)

2

p2

∫ T

0

∫

Ω

(du + 2φ(v))|∇xu
p/2|2 + ra

∫ T

0

∫

Ω

up+a ≤
∫

Ω

upin
p

+ CT

(

1 +

∫ T

0

∫

Ω

up+d

)

.

Remember our assumption that uin lies in W 2,s0(Ω) with s0 > 1+N/2. Then by Sobolev embeddings,
∫

Ω
upin

is clearly finite. In the case p ≥ 1, since a > d, we can conclude that
∫ T

0

∫

Ω u
p+a is finite, so that ua lies in Ls0 .

In the case p < 1, a direct integration of eq. (4) w.r.t. space and time gives that u1+a is in L1, which implies that
ua is in Ls0 (since in this case a s0 = p+ a < 1 + a). Then in both cases ua is in Ls0 , and estimate (54) ensures
that ∂tv and ∇2

xv lie in Lq0 .
Using embedding results (see for example Lemma 3.3 in Chapter II of [14]) and the fact that q0 > 1 +N/2,

we see that v is Hölder continuous on [0, T ]×Ω. Similarly, ∂tφ(v) = φ′(v) ∂tv and ∇2
xφ(v) = φ′′(v)(∇xv)

t(∇xv)+
φ′(v)∇2

xv lie in Lq0 , so that φ(v) is also Hölder continuous on [0, T ]× Ω. We then rewrite the equation satisfied
by u as

∂tu−A(t, x)∆xu+B(t, x) · ∇xu+ C(t, x)u = 0, (56)

where A(t, x) = du + φ(v) is Hölder continuous on [0, T ] × Ω, B(t, x) = −2∇xφ(v) lies in L2q0 , and C(t, x) =
−∆xφ(v)− ru + rau

a + rbv
b lies in Ls0 .

We now apply the following classical theorem issued from the theory of linear parabolic equations (see for
example Theorem 9.1 and its corollary in Chapter IV of [14]):

Proposition 3. Let s > (N + 2)/2 and T > 0. Suppose that u is solution of the equation

∂tu−A(t, x)∆xu+B(t, x) · ∇xu+ C(t, x)u = 0, (57)

∇xu(t, x) · n(x) = 0 for (t, x) ∈ R+ × ∂Ω,

where the coefficients satisfy: A := A(t, x) is continuous on [0, T ] × Ω, B := B(t, x) lies in Lr for some r >
max(s,N + 2), and C := C(t, x) lies in Ls. Suppose also that u(0, ·) ∈ W 2,s(Ω) (and, if s ≥ 3, that the
compatibility condition on ∂Ω holds).

Then, ∂tu and ∂2xixj
u lie in Ls (for i, j = 1..N), and u is Hölder continuous on [0, T ]× Ω (w.r.t. t and x).

This concludes the first step of the study of the regularity.

Third step: regularity, second part

We now assume that φ, (resp. uin, vin) have locally Hölder continuous second order derivatives on R+ (resp.
Ω).

We already know that (u, v) are Hölder continuous on [0, T ]× Ω. Thanks to a Sobolev embedding, the space
gradient ∇xv is also Hölder continuous on [0, T ]× Ω. It is then clear that in eq. (5), the reaction term is Hölder
continuous on [0, T ]×Ω. Thanks to standard results in the theory of linear parabolic equations (see for example
Theorem 5.3 in Chapter IV of [14]), ∂tv and ∇2

xv are also Hölder continuous on [0, T ]×Ω. Writing eq. (4) in its
form (56), we see that the coefficients A, B and C are Hölder continuous on [0, T ] × Ω (note that we use here
the local Hölder continuity of φ′′). The same result for linear parabolic equations implies that ∂tu and ∇2

xu are
Hölder continuous on [0, T ]× Ω.

This concludes the second step of the study of the regularity.

Fourth step: stability and uniqueness

Let (u1, v1) and (u2, v2) be two solutions of (4)-(6). We recall that (under our assumptions of regularity
on the initial data), these solutions (u1, v1) and (u2, v2) are continuous (and even Hölder continuous) functions
on [0, T ] × Ω, and so are the space gradients ∇xv1 and ∇xv2. For any function (u, v) 7→ F (u, v), we write
F (u, v) = F (u1,v1)+F (u2,v2)

2 .

We substract the equations satisfied by (u2, v2) to the equations satisfied by (u1, v1):
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∂t(u1 − u2)−∆x[(dA + φ(v)) (u1 − u2)]−∆x[(g(v1)− g(v2))u]

= [rv − raua − rbvb] (u1 − u2)− [ra (u
a
1 − ua2) + rb (v

b
1 − vb2)]u,

∂t(v1 − v2)− dv ∆x(v1 − v2)

= [rv − rcvc − rdud] (v1 − v2)− [rc (v
c
1 − vc2) + rd (u

d
1 − ud2)] v.

(58)

We multiply the first equation by the difference u1 − u2 and integrate w.r.t. space and time. We get the
identity

1

2

∫

Ω

(u1 − u2)
2(T ) +

∫ T

0

∫

Ω

(dA + φ(v)) |∇x(u1 − u2)|2 +
∫ T

0

∫

Ω

(u1 − u2)∇x(u1 − u2) · ∇x(φ(v))

+

∫ T

0

∫

Ω

(φ(v1)− φ(v2))∇x(u1 − u2) · ∇xu+

∫ T

0

∫

Ω

u∇x(u1 − u2) · ∇x[(φ(v1)− φ(v2))]

=
1

2

∫

Ω

(u1 − u2)
2(0) +

∫ T

0

∫

Ω

[rv − raua − rbvb] (u1 − u2)
2 −

∫ T

0

∫

Ω

(u1 − u2) [ra (u
a
1 − ua2) + rb (v

b
1 − vb2)]u.

(59)
In the left-hand side of this identity, the two first terms are nonnegative. The other terms are controlled thanks

to the smoothness of the functions (u, v) and their space gradients (and the elementary inequality 2ab ≤ a2+ b2).
We detail below their treatment: the third term of (59) is controlled by

∣

∣

∣

∣

∣

∫ T

0

∫

Ω

(u1 − u2)∇x(u1 − u2) · ∇x(φ(v))

∣

∣

∣

∣

∣

≤ CT

∫ T

0

∫

Ω

|u1 − u2| |∇x(u1 − u2)|

≤ dA
4

∫ T

0

∫

Ω

|∇x(u1 − u2)|2 + CT

∫ T

0

∫

Ω

|u1 − u2|2,
(60)

the fourth term of (59) is controlled by
∣

∣

∣

∣

∣

∫ T

0

∫

Ω

(φ(v1)− φ(v2))∇x(u1 − u2) · ∇xu

∣

∣

∣

∣

∣

≤ dA
4

∫ T

0

∫

Ω

|∇x(u1 − u2)|2 + CT

∫ T

0

∫

Ω

|φ(v1)− φ(v2)|2, (61)

and the fifth term of (59) is controlled by
∣

∣

∣

∣

∣

∫ T

0

∫

Ω

u∇x(u1 − u2) · ∇x[(φ(v1)− φ(v2))]

∣

∣

∣

∣

∣

≤ dA
4

∫ T

0

∫

Ω

|∇x(u1 − u2)|2 + CT

∫ T

0

∫

Ω

|∇x[φ(v1)− φ(v2)]|2,

(62)

where moreover
∫ T

0

∫

Ω

|∇x[φ(v1)− φ(v2)]|2 =

∫ T

0

∫

Ω

|φ′(v)∇x(v1 − v2) + (φ′(v1)− φ′(v2))∇xv|2

≤ CT

∫ T

0

∫

Ω

|∇x(v1 − v2)|2 + CT

∫ T

0

∫

Ω

|φ′(v1)− φ′(v2)|2.
(63)

It remains to control the last term of the right-hand side :

−
∫ T

0

∫

Ω

(u1 − u2) [ra (u
a
1 − ua2) + rb (v

b
1 − vb2)]u ≤ rb

∫ T

0

∫

Ω

|u1 − u2| |vb1 − vb2|u

≤ CT

∫ T

0

∫

Ω

|u1 − u2|2 + CT

∫ T

0

∫

Ω

|vb1 − vb2|2.
(64)

Thanks to those estimates, the identity (59) becomes
∫

Ω

(u1 − u2)
2(T ) ≤

∫

Ω

(u1 − u2)
2(0) + CT

(

∫ T

0

∫

Ω

(u1 − u2)
2 +

∫ T

0

∫

Ω

|φ(v1)− φ(v2)|2

+

∫ T

0

∫

Ω

|g′(v1)− g′(v2)|2 +
∫ T

0

∫

Ω

|∇x(v1 − v2)|2 +
∫ T

0

∫

Ω

|vb1 − vb2|2
)

.

(65)
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We now multiply the second equation of (58) by the difference v1 − v2 and integrate w.r.t. space and time.
We get

1

2

∫

Ω

(v1 − v2)
2(T ) + dv

∫ T

0

∫

Ω

|∇x(v1 − v2)|2

=
1

2

∫

Ω

(v1 − v2)
2(0)

+

∫ T

0

∫

Ω

[rv − rc vc − rd ud] (v1 − v2)
2 −

∫ T

0

∫

Ω

(v1 − v2) [rc (v
c
1 − vc2) + rd (u

d
1 − ud2)] v

≤ 1

2

∫

Ω

(v1 − v2)
2(0) + CT

∫ T

0

∫

Ω

(v1 − v2)
2 + CT

∫ T

0

∫

Ω

|ud1 − ud2|2.

(66)

We combine the two energy estimates (65) and (66):
∫

Ω

(u1 − u2)
2(T ) +

∫

Ω

(v1 − v2)
2(T ) ≤

∫

Ω

(u1 − u2)
2(0) +

∫

Ω

(v1 − v2)
2(0)

+CT

(

∫ T

0

∫

Ω

(u1 − u2)
2 +

∫ T

0

∫

Ω

(v1 − v2)
2

+

∫ T

0

∫

Ω

|ud1 − ud2|2 +
∫ T

0

∫

Ω

|φ(v1)− φ(v2)|2 +
∫ T

0

∫

Ω

|φ′(v1)− φ′(v2)|2 +
∫ T

0

∫

Ω

|vb1 − vb2|2
)

.

(67)

Since φ′′ is continuous on R+, the applications φ and φ′ are locally Lipschitz. The assumption b ≥ 1, d ≥ 1
ensures that the applications v 7→ vb and u 7→ ud are also locally Lipschitz on R+. Therefore

∫

Ω

(u1 − u2)
2(T ) +

∫

Ω

(v1 − v2)
2(T ) ≤

∫

Ω

(u1 − u2)
2(0) +

∫

Ω

(v1 − v2)
2(0) (68)

+CT

(

∫ T

0

∫

Ω

(u1 − u2)
2 +

∫ T

0

∫

Ω

(v1 − v2)
2

)

and we can conclude thanks to Gronwall’s lemma.

Note that thanks to the minimum principle, the assumption b ≥ 1, d ≥ 1 can be relaxed if the initial data are
bounded below by a strictly positive constant.

This concludes the study of stability (and uniqueness), and ends the proof of Theorem 1.

Proof of Theorem 2. We define v1, φB(v) and φ1 as in the proof of Theorem 1. Then Proposition 1 gives that the
solution of system (9)–(11) with parameters dA := du/2 > 0, dB := du+φ1 > 0, h(v) := du/2+φB(v) ≥ du/2 > 0,
k(v) := du/2+φ1−φB(v) ≥ du/2 > 0 and initial data uA,in := k(vin)

h(vin)+k(vin)
uin ≥ 0, uB,in := h(vin)

h(vin)+k(vin) uin ≥ 0

and vin ≥ 0 converge a. e. on R+ × Ω when ε tends to zero, and its limit (uA, uB, v) provides a solution
(u := uA+ uB, v) ∈ L2(Ω)×L∞(Ω) of system (4)–(6) with du +φ(v) replaced by dA + dB

h(v)
h(v)+k(v) = du +φB(v).

We conclude as in the proof of Theorem 1.

References

[1] Amann, Herbert Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems. Differ-
ential Integral Equations 3 (1990), no. 1, 13–75.

[2] Amann, Herbert Dynamic theory of quasilinear parabolic systems. III. Global existence. Math. Z. 202 (1989),
no. 2, 219–250.

14



[3] Amann, Herbert Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems.
Function spaces, differential operators and nonlinear analysis (Friedrichroda, 1992), 9–126, Teubner-Texte
Math., 133, Teubner, Stuttgart, 1993.

[4] Boudin, Laurent; Grec, Bérénice; Salvarani, Francesco The Maxwell-Stefan diffusion limit for a kinetic model
of mixtures. Preprint, 2011.

[5] Cañizo, José A.; Desvillettes, Laurent; Fellner, Klemens Improved duality estimates and applica-
tions to reaction-diffusion equations. Commun. Partial Differential Equations, Published online, DOI:
10.1080/03605302.2013.829500

[6] Chen, Li; Jüngel, Ansgar Analysis of a parabolic cross-diffusion population model without self-diffusion. J.
Differential Equations 224 (2006), no. 1, 39–59.

[7] Choi, Y. S.; Lui, Roger; Yamada, Yoshio Existence of global solutions for the Shigesada-Kawasaki-Teramoto
model with weak cross-diffusion. Discrete Contin. Dyn. Syst. 9 (2003), no. 5, 1193–1200.

[8] Choi, Y. S.; Lui, Roger; Yamada, Yoshio Existence of global solutions for the Shigesada-Kawasaki-Teramoto
model with strongly coupled cross-diffusion. Discrete Contin. Dyn. Syst. 10 (2004), no. 3, 719–730.

[9] Conforto, F.; Desvillettes, L. Rigorous passage to the limit in a system of reaction-diffusion equations towards
a system including cross diffusion. Preprint, 2009.

[10] Desvillettes, L. About entropy methods for reaction-diffusion equations. Riv. Mat. Univ. Parma (7) 7 (2007),
81–123.

[11] Desvillettes, L.; Lepoutre, Th.; Moussa A. Entropy, duality and cross diffusion. Preprint CMLA 2013-02.

[12] Iida, Masato; Mimura, Masayasu; Ninomiya, Hirokazu Diffusion, cross-diffusion and competitive interaction.
J. Math. Biol. 53 (2006), no. 4, 617–641.

[13] Izuhara, Hirofumi; Mimura, Masayasu Reaction-diffusion system approximation to the cross-diffusion com-
petition system. Hiroshima Math. J. 38 (2008), no. 2, 315–347.

[14] Ladyženskaja, O. A.; Solonnikov, V. A.; Ural’ceva, N. N. Linear and quasilinear equations of parabolic type.
Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1968.

[15] Lou, Yuan; Ni, Wei-Ming; Wu, Yaping On the global existence of a cross-diffusion system. Discrete Contin.
Dynam. Systems 4 (1998), no. 2, 193–203.

[16] Matano, Hiroshi; Mimura, Masayasu Pattern formation in competition-diffusion systems in nonconvex do-
mains. Publ. Res. Inst. Math. Sci. 19 (1983), no. 3, 1049–1079.

[17] Mimura, Masayasu Stationary pattern of some density-dependent diffusion system with competitive dynamics.
Hiroshima Math. J. 11 (1981), no. 3, 621–635.

[18] Murakawa, Hideki A relation between cross-diffusion and reaction-diffusion. Discrete Contin. Dyn. Syst. Ser.
S 5 (2012), no. 1, 147–158.

[19] Okubo, Akira Diffusion and ecological problems: mathematical models. An extended version of the Japanese
edition, Ecology and diffusion. Biomathematics, 10. Springer-Verlag, Berlin-New York, 1980.

[20] Pozio, M. A.; Tesei, A. Global existence of solutions for a strongly coupled quasilinear parabolic system.
Nonlinear Anal. 14 (1990), no. 8, 657–689.

[21] Shim, Seong-A Uniform boundedness and convergence of solutions to the systems with a single nonzero
cross-diffusion. J. Math. Anal. Appl. 279 (2003), no. 1, 1–21.

[22] Shigesada, Nanako; Kawasaki, Kohkichi; Teramoto, Ei Spatial segregation of interacting species. J. Theoret.
Biol. 79 (1979), no. 1, 83–99.

[23] Simon, Jacques Compact sets in the space Lp(0, T ;B). Ann. Mat. Pura Appl. (4) 146 (1987), 65âĂŞ96.

15



[24] Tuô.c, Phan Văn Global existence of solutions to Shigesada-Kawasaki-Teramoto cross-diffusion systems on
domains of arbitrary dimensions. Proc. Amer. Math. Soc. 135 (2007), no. 12, 3933–3941.

[25] Tuô.c, Phan Văn On global existence of solutions to a cross-diffusion system. J. Math. Anal. Appl. 343
(2008), no. 2, 826–834.

[26] Wang, Yi The global existence of solutions for a cross-diffusion system. Acta Math. Appl. Sin. Engl. Ser. 21
(2005), no. 3, 519–528.

[27] Yagi, Atsushi Global solution to some quasilinear parabolic system in population dynamics. Nonlinear Anal.
21 (1993), no. 8, 603–630.

[28] Yamada, Yoshio Global solutions for quasilinear parabolic systems with cross-diffusion effects. Nonlinear
Anal. 24 (1995), no. 9, 1395–1412.

16


