DE LA RECHERCHE À L'INDUSTRIE

AJUSTEMENT DE LOIS DE COMPORTEMENT ELASTOPLASTIQUE

Encadrement: Gabriel Seisson

www.cea.fr

Marie Maligot

CONTENTS

1. Introduction

2. Quelques notions de mécanique

Qu'est-ce qu'une loi de comportement?

Parties sphérique et déviatorique de $\underline{\sigma}$

Contrainte scalaire

3. Traitement des données expérimentales

Courbe contrainte-déformation

Influence de T et έ

Base de données vs informations à extrapoler

4. Calage d'un modèle élastoplastique

Modèle de Preston Tonks Wallace

Méthodologie

Instabilités de Rayleigh Taylor

CaLiXt

5. Conclusion

INTRODUCTION

- Modéliser le comportement élasto-plastique du matériau dans un domaine observable et simple
- ⇒ Données expérimentales disponibles pour des essais quasi-statiques et faiblement dynamiques

- Etre capable de l'extrapoler dans un domaine qui n'est pas observable et complexe car dans des conditions extrêmes de pression, température, déformation et vitesse de déformation
- ⇒ Nécessite d'être prédictif

CONTENTS

2. Quelques notions de mécanique

Qu'est-ce qu'une loi de comportement?

Parties sphérique et déviatorique de $\underline{\sigma}$

Contrainte scalaire

3. Traitement des données expérimentales

Courbe contrainte-déformation

Influence de T et έ

Base de données vs informations à extrapoler

4. Calage d'un modèle élastoplastique

Modèle de Preston Tonks Wallace

Méthodologie

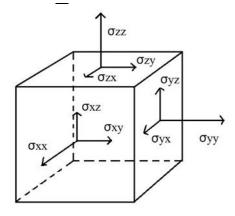
Instabilités de Rayleigh Taylor

CaLiXt

5. Conclusion

QU'EST-CE QU'UNE LOI DE COMPORTEMENT?

- 2 solides soumis aux mêmes efforts extérieurs ne se déforment pas de manière identique : dépend des matériaux considérés : loi de comportement
- Tenseur des contraintes $\underline{\sigma}$ (en MPa)



$$\underline{\underline{\sigma}} = \begin{pmatrix} \sigma_{\chi\chi} & \sigma_{\chi y} & \sigma_{\chi z} \\ \sigma_{\chi y} & \sigma_{y y} & \sigma_{y z} \\ \sigma_{\chi z} & \sigma_{y z} & \sigma_{z z} \end{pmatrix}$$

- Conservation du moment dynamique \Rightarrow symétrie de $\underline{\sigma} \Rightarrow$ 6 dimensions, et matrice diagonalisable dans un « repère principal »
- Si contraintes principales identiques = état de contrainte « sphérique », cas du solide au repos
- Sinon, cisaillement = partie déviatorique, cas d'un écoulement

PARTIES SPHERIQUE ET DEVIATORIQUE DU TENSEUR DES CONTRAINTES

 $\underline{\underline{\sigma}} = partie \ sph\'erique + partie \ d\'eviatorique$

$$\underline{\underline{\sigma}} = -p \cdot \underline{\underline{I}} + \underline{\underline{\sigma}^D}$$

où
$$p = -\frac{1}{3} Tr(\underline{\sigma})$$

- Partie sphérique :
 - \blacksquare équation d'état (EOS) : f(P, V, E)
- Partie déviatorique :
 - loi de comportement élasto-plastique : $f(\dot{\varepsilon}, \varepsilon, T, P)$

CONTRAINTE SCALAIRE

- Tenseur des contraintes $\underline{\underline{\sigma}} \rightarrow \text{scalaire} \times \text{contrainte équivalente} \times \sigma_e$
- Contrainte de Von Mises:

Exprimée dans le repère principal	Exprimée en fonction du déviateur	
$\sigma_e = \sqrt{\frac{1}{2} \cdot \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_1 - \sigma_3)^2 \right]}$	$\sigma_e = \sqrt{\frac{3}{2} \cdot s_{ij} s_{ij}}$	

- Loi phénoménologique : essais
- Cas particulier de la contrainte uniaxiale : la contrainte équivalente EST la contrainte

$$\underline{\underline{\sigma}} = \begin{pmatrix} \sigma & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} \sigma/3 & 0 & 0 \\ 0 & \sigma/3 & 0 \\ 0 & 0 & \sigma/3 \end{pmatrix} + \begin{pmatrix} 2\sigma/3 & 0 & 0 \\ 0 & -\sigma/3 & 0 \\ 0 & 0 & \sigma/3 \end{pmatrix}$$

$$\underline{\underline{\sigma}^{D}}$$

$$\sigma_e = \sqrt{\frac{3}{2} \cdot (\frac{4}{9}\sigma^2 + \frac{1}{9}\sigma^2 + \frac{1}{9}\sigma^2)} = \sigma$$

Généralisation au cas 3D

CONTENTS

1. Introduction

2. Quelques notions de mécanique

Qu'est-ce qu'une loi de comportement?

Parties sphérique et déviatorique de $\underline{\sigma}$

Contrainte scalaire

3. Traitement des données expérimentales

Courbe contrainte-déformation

Influence de T et έ

Base de données vs informations à extrapoler

4. Calage d'un modèle élastoplastique

Modèle de Preston Tonks Wallace

Méthodologie

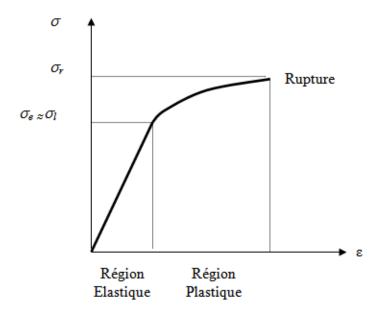
Instabilités de Rayleigh Taylor

CaLiXt

5. Conclusion

COURBE CONTRAINTE-DEFORMATION

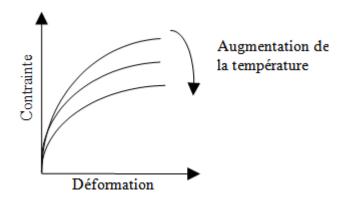
- Contrainte : effort normalisé à la surface (homogène à une pression)
- Déformation : allongement relatif

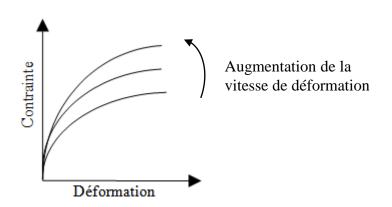


- Matériau = ressort ⇒ « élasticité » (// loi de Hooke)
- Au-delà d'un certain niveau de déformation, irréversibilité : « plasticité »
- Finit par casser

INFLUENCE DE LA TEMPERATURE ET DE LA VITESSE

- La température adoucit le matériau
- La vitesse de déformation durcit le matériau

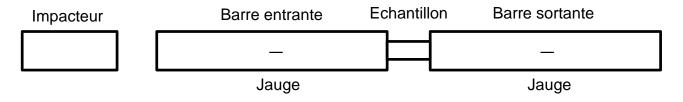




 \Rightarrow Compétition entre T et $\dot{\varepsilon}$

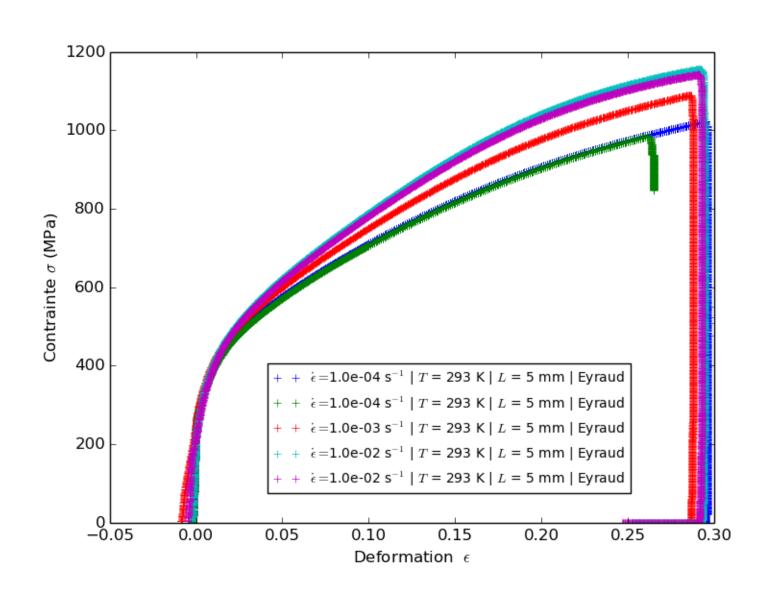
BASE DE DONNÉES VS INFORMATIONS À EXTRAPOLER

- Equivalence temps-température : essais froids pour simuler de grandes vitesses de déformation
- Essais de calage:
 - Quasi-statiques : petit échantillon comprimé à faible vitesse constante, mesure de l'allongement relatif en fonction de la charge appliquée
 - Faiblement dynamiques (barres d'Hopkinson) :

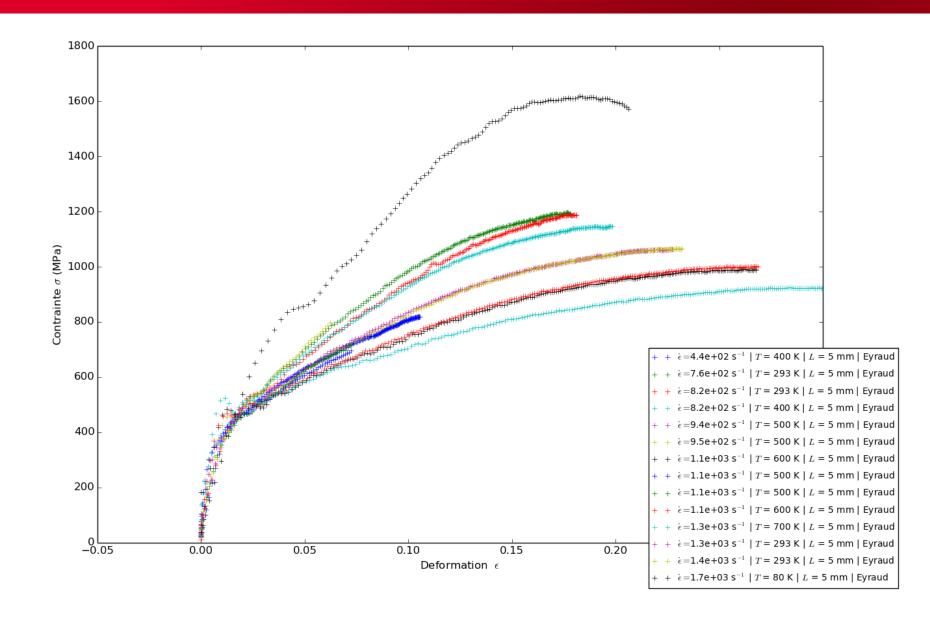


	$\varepsilon_{max}(-)$	$\dot{\varepsilon}(s^{-1})$	T(K)	P
Essai quasistatique	20% → 50%	$1.10^{-4} - 2$	293 – 673	
Barres d'Hopkinson	10% → 25%	443 – 3500	77 – 700	
Extrapolation à	> 100%	> 10 ⁴	400 - 800	qq 10GPa

ESSAIS QUASI-STATIQUES



BARRES D'HOPKINSON



CONTENTS

1. Introduction

2. Quelques notions de mécanique

Qu'est-ce qu'une loi de comportement?

Parties sphérique et déviatorique de $\underline{\sigma}$

Contrainte scalaire

3. Traitement des données expérimentales

Courbe contrainte-déformation

Influence de T et έ

Base de données vs informations à extrapoler

4. Calage d'un modèle élastoplastique

Modèle de Preston Tonks Wallace

Méthodologie

Instabilités de Rayleigh Taylor

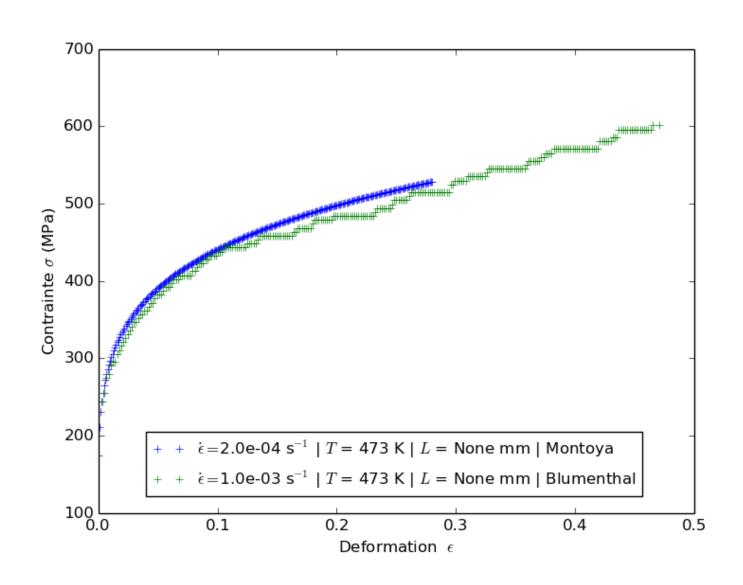
CaLiXt

5. Conclusion

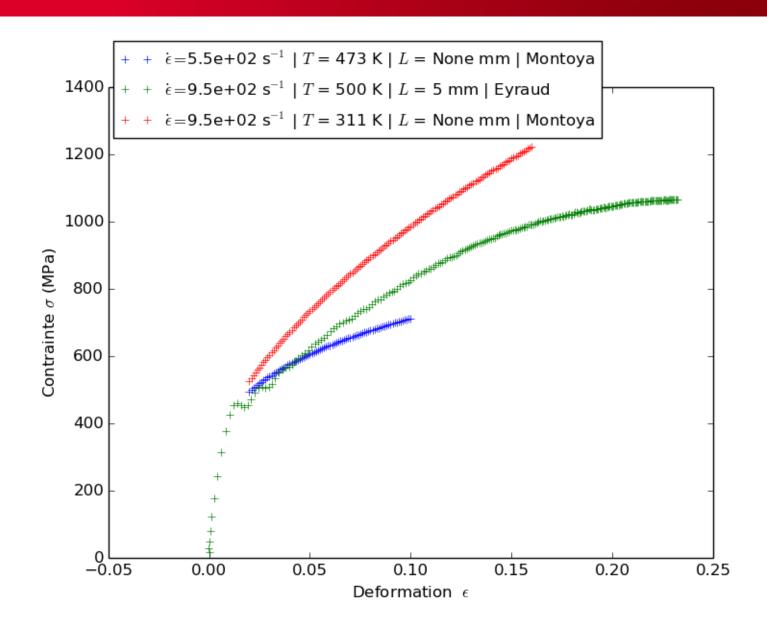
MODÈLE ÉLASTOPLASTIQUE: PRESTON TONKS WALLACE

- Modèle semi-empirique
 - Repose sur des données expérimentales
 - Se base sur des considérations physiques (structure cristalline, mécanismes microscopiques de déformation plastique)
 - Permet d'extrapoler vers la contrainte de saturation
- Présupposés PTW
 - Existence d'un palier athermique : à T suffisamment élevée, σ ne dépend plus ni de T ni de $\dot{\varepsilon}$
 - Mécanisme thermiquement activé aux vitesses de déformation moyennes : influence conjointe de T et \(\bar{\epsilon}\)
 - Trainage visqueux : aux temps très courts, augmentation accrue de σ avec $\dot{\varepsilon}$ sans influence de T
- - 4 variables : $(\dot{\varepsilon}, \varepsilon, T, P)$
 - \blacksquare 10 paramètres à ajuster : $(s_0$, s_∞ , y_0 , y_∞ , θ , γ , τ_G , p , β , z_1)

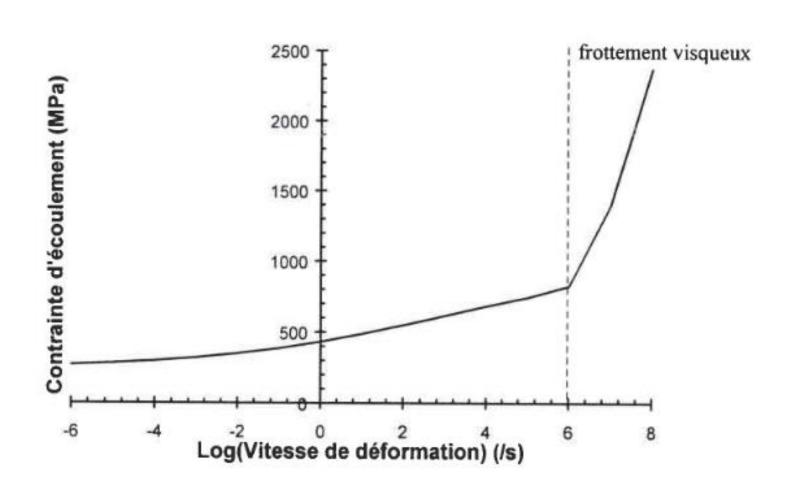
PALIER ATHERMIQUE



ZONE THERMIQUEMENT ACTIVEE



TRAINAGE VISQUEUX



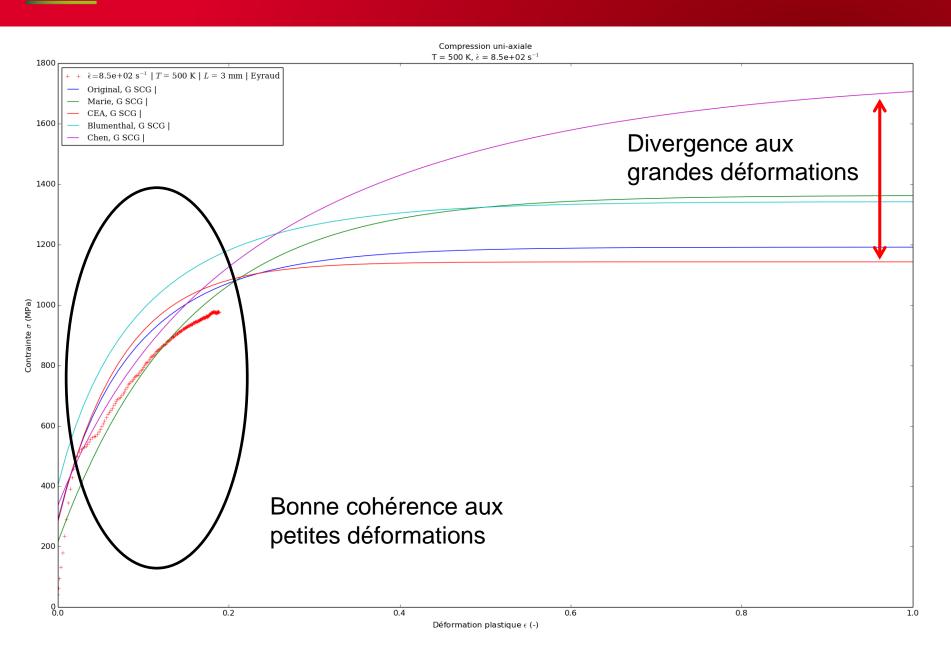
MODÈLE ÉLASTOPLASTIQUE: PRESTON TONKS WALLACE

- Modèle semi-empirique
 - Repose sur des données expérimentales
 - Se base sur des considérations physiques (structure cristalline, mécanismes microscopiques de déformation plastique)
 - Permet d'extrapoler vers la contrainte de saturation
- Présupposés PTW
 - Existence d'un palier athermique : à T suffisamment élevée, σ ne dépend plus ni de T ni de $\dot{\varepsilon}$
 - Mécanisme thermiquement activé aux vitesses de déformation moyennes : influence conjointe de T et ε
 - Trainage visqueux : aux temps très courts, augmentation accrue de σ avec $\dot{\varepsilon}$ sans influence de T
- - 4 variables : $(\dot{\varepsilon}, \varepsilon, T, P)$
 - 10 paramètres à ajuster : $(s_0$, s_∞ , y_0 , y_∞ , θ , γ , τ_G , p , β , z_1

METHODOLOGIE

- Détermination des paramètres en tenant compte des incertitudes liées au traitement (hypothèses posées, extrapolation, ...)
 - Obtention d'un point d'initialisation
- Comparaison à la littérature et encadrement des paramètres
 - Cas d'optimisation à paramètres bornés
 - Problème : plusieurs jeux de paramètres fournissent des écarts non significatifs à faible déformation et faible vitesse mais divergent fortement dans le domaine non observable
 - Besoin de données supplémentaires pour choisir : Rayleigh-Taylor (IRT)
- Utilisation d'un résultat d'expérience plus complexe pour contraindre l'extrapolation
 - Optimisation (=minimisation d'erreur) sous contrainte d'égalité

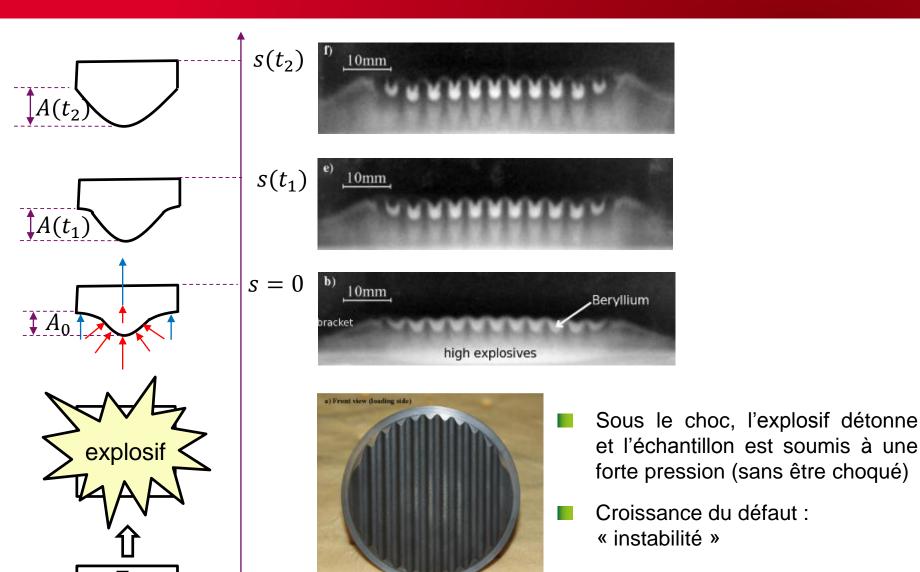
IMPACT DES JEUX DE PARAMETRES



METHODOLOGIE

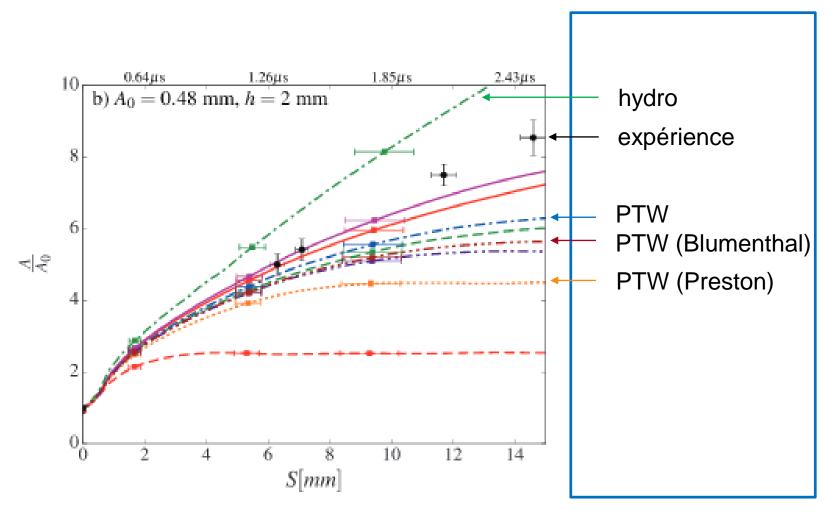
- Détermination des paramètres en tenant compte des incertitudes liées au traitement (hypothèses posées, extrapolation, ...)
 - Obtention d'un point d'initialisation
- Comparaison à la littérature et encadrement des paramètres
 - Cas borné
 - Problème : plusieurs jeux de paramètres fournissent des écarts non significatifs à faible déformation et faible vitesse mais divergent fortement dans le domaine non observable
 - Besoin de données supplémentaires pour choisir : Rayleigh-Taylor (IRT)
- Utilisation d'un résultat d'expérience plus complexe pour contraindre l'extrapolation
 - Optimisation (=minimisation d'erreur) sous contrainte d'égalité

INSTABILITES DE RAYLEIGH-TAYLOR : DISPOSITIF



nidhaanaakaamailpaanaanhaanaahaa

RÉSULTATS EXPÉRIMENTAUX



Reformulation du problème : trouver un jeu de paramètres qui fitte l'expérience aux petites déformations, mais qui diminue la contrainte d'écoulement sur la fin du chemin thermodynamique pour « remonter » les PTW

CALIXT: CODE ELASTOPLASTICITE

- Traitement de la partie déviatorique du tenseur des contraintes implémenté
 - Pour (loi de comportement, loi de fusion, équation d'état) donné, simulation d'un essai quasistatique ou dynamique dans les conditions de T et $\dot{\varepsilon}$ souhaitées
 - Suivi du chemin thermodynamique d'un échantillon
- Développement en cours de la partie amont
 - Gestion d'une base de données
 - Assistance de l'utilisateur dans la détermination d'un jeu de paramètres PTW
 - Optimisation contrainte autour de ce point

CONTENTS

1. Introduction

2. Quelques notions de mécanique

Qu'est-ce qu'une loi de comportement?

Parties sphérique et déviatorique de $\underline{\sigma}$

Contrainte scalaire

3. Traitement des données expérimentales

Courbe contrainte-déformation

Influence de T et έ

Base de données vs informations à extrapoler

4. Calage d'un modèle élastoplastique

Modèle de Preston Tonks Wallace

Méthodologie

Instabilités de Rayleigh Taylor

CaLiXt

5. Conclusion

CONCLUSION

- Données expérimentales insuffisantes pour couvrir le domaine que l'on veut maîtriser
- Modèle élastoplastique PTW permet d'être prédictif s'il est bien ajusté
- Il n'y a pas UN bon jeu de paramètres : l'outil de calibration va de pair avec l'évaluation de biais
- ⇒ Tout ne peut pas être automatisé : il faut faire des choix dans le traitement des données.

MERCI DE VOTRE ATTENTION!

DES QUESTIONS?

PRESTON TONKS WALLACE MODEL (PTW)

$$\tau = \tau_s + \frac{1}{p} \cdot \left(s_0 - \tau_y \right) \cdot \ln \left(1 - \left[1 - \exp\left(-p \frac{\tau_s - \tau_y}{s_0 - \tau_y} \right) \right] \cdot \exp\left(-\frac{p\theta \varepsilon}{\left(s_0 - \tau_y \right) \left[\exp\left(p \frac{\tau_s - \tau_y}{s_0 - \tau_y} \right) - 1 \right]} \right) \right)$$

$$\begin{aligned} \sigma_{s} &= \begin{cases} s_{0} - (s_{0} - s_{\infty}) \cdot \operatorname{erf}\left(\frac{T}{\tau_{G}} \cdot \frac{T_{fus0}}{T_{fus}} \cdot \ln\left(\frac{\gamma \dot{\xi}}{\dot{\varepsilon}}\right)\right) \\ s_{0}\left(\frac{\gamma \dot{\xi}}{\dot{\varepsilon}}\right)^{\beta} & en \ trainage \ visqueux \end{cases} \\ \tilde{\sigma}_{s} &= \begin{cases} y_{0} - (y_{0} - y_{\infty}) \cdot \operatorname{erf}\left(\frac{T}{\tau_{G}} \cdot \frac{T_{fus0}}{T_{fus}} \cdot \ln\left(\frac{\gamma \dot{\xi}}{\dot{\varepsilon}}\right)\right) \\ y_{0}\left(\frac{\gamma \dot{\xi}}{\dot{\varepsilon}}\right)^{z_{1}} & en \ trainage \ visqueux \end{cases}$$

$$\tau = \frac{\sigma}{2G(T, P)}$$

$$G(T,P) = G_0 \left[1 + \left(\frac{G_p'}{G_0} \right) \frac{P}{\eta^{\frac{1}{3}}} + \left(\frac{G_T'}{G_0} \right) (T - 300) \right] \quad d'après \ Steinberg, Cochran, Guinan$$

DE LA RECHERCHE À L'INDUSTRIE

10 PARAMETRES

- $s_0 :$ contrainte de saturation (ε → ∞) pour $T \to 0K$
- s_{∞} : contrainte de saturation sur le palier athermique (essai quasistatique à T suffisamment élevée)
- y_0 : limite d'élasticité ($\epsilon \to 0$) pour $T \to 0K$
- y_{∞} : limite d'élasticité sur le palier athermique
- θ : taux d'écrouissage initial : (pente de la courbe en $\varepsilon \sim 0$)
- $ightharpoonup \gamma$: transition vers le trainage visqueux pour $\dot{\varepsilon} > \gamma \dot{\xi}$
- \blacksquare τ_G : terme d'ajustement quelque soit la loi de fusion
- p: constante du matériau (0 si structure cristallographique cubique centrée)
- β : loi puissance en trainage visqueux (saturation)
- z_1 : loi puissance en trainage visqueux (élasticité)